While Dawn Keeps Cruising, Engineers Carry On

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Indawnstrious Readers,

In the depths of the main asteroid belt between Mars and Jupiter, far from Earth, far even from any human-made object, Dawn remains in silent pursuit of dwarf planet Ceres. It has been more than six months since it slipped gracefully away from the giant protoplanet Vesta. The spacecraft has spent 95 percent of the time since then gently thrusting with its ion propulsion system, using that blue-green beam of high velocity xenon ions to propel itself from one alien world to another.

The ship set sail from Earth more than two thousand days ago, and its voyage on the celestial seas has been wonderfully rewarding. Its extensive exploration of Vesta introduced humankind to a complex and fascinating place that had only been tantalizingly glimpsed from afar with telescopes beginning with its discovery 206 years ago today. Thanks to the extraordinary capability of ion propulsion, Dawn was able to spend 14 months orbiting Vesta, observing dramatic landscapes and exotic features and collecting a wealth of measurements that scientists will continue to analyze for many years.

When it was operating close to Vesta, the spacecraft was in frequent contact with Earth. It took Dawn quite a bit of time to beam the 31,000 photos and other precious data to mission control. In addition, engineers needed to send a great many instructions to the distant adventurer to ensure it remained healthy and productive in carrying out its demanding work in the unforgiving depths of space.

Dawn is now more than 20 times farther from Vesta than the moon is from Earth. Alone again and on its long trek to Ceres, it is not necessary for the ship to be in radio contact as often. As we saw in November, the spacecraft now stops ion thrusting only once every four weeks to point its main antenna to Earth. This schedule conserves the invaluable hydrazine propellant the explorer will need at Ceres. But communicating less frequently does not mean the mission operations team is any less busy. Indeed, as we have explained before, “quiet cruise” consists of a considerable amount of activity.

Each time Dawn communicates with Earth, controllers transmit a second-by-second schedule for the subsequent four weeks. They also load a detailed flight profile with the ion throttle levels and directions for that period. It takes about three weeks to calculate and formulate these plans and to analyze, check, double check, and triple check them to ensure they are flawless before they can be radioed to Dawn.

In addition to all the usual information Dawn needs to keep flying smoothly, operators occasionally include some special instructions. As one example, over the last few months, they have gradually lowered the temperatures of some components slightly in order to reduce heater power. When Dawn stretched out its solar array wings shortly after separating from the Delta rocket on September 27, 2007, its nearly 65-foot wingspan was the longest of any NASA interplanetary probe. The large area of solar cells is needed to collect enough light from the distant sun to power the ion propulsion system and all other spacecraft systems. Devoting a little less power to heaters allows more power to be applied to ionizing and accelerating xenon, yielding greater thrust. With two and a half years of powered flight required to travel from Vesta to Ceres, even a little extra power can make a worthwhile difference to a mission that craves power.

Most temperature adjustments are only two degrees Celsius (3.8 degrees Fahrenheit) at a time, but even that requires careful analysis and investigation, because lowering the temperature of one component may affect another. Xenon and hydrazine propellants need to be maintained in certain ranges, and the lines they flow through follow complicated paths around the spacecraft, so the temperatures all along the way matter. Most of the hardware onboard, from valves and switches to electronics to structural mounts for sensitively aligned units, needs to be thermally regulated to keep Dawn shipshape.

It can take hours for a component to cool down and stabilize at a new setting, and sometimes the change won’t even occur until the spacecraft has turned away to resume thrusting, when the faint warmth of the sun and the deep cold of black space affect different parts of the complex robot. Then it will be another four weeks until engineers will receive a comprehensive report on all the temperatures, so they need to be cautious with each change.

› Continue reading Marc Rayman’s Dawn Journal

Tags: , , , , , , , , , , , , ,

Leave a Reply

Please keep comments on the topic of the post, and avoid using links to external sites. Selected comments will be chosen for posting.