Archive for July, 2013

Dawn’s Journey: A Power Trip

Tuesday, July 30th, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Dawn's solar arrays are folded to fit inside the nose cone in preparation for launch
The Dawn spacecraft’s solar array wings — pictured here in a folded position in preparation for launch — span 19.7 meters (nearly 65 feet) and are designed to keep the spacecraft powered even as it ventures further from the sun into the remote asteroid belt. Image credit: NASA/JPL-Caltech

Dear Megalodawniacs,

Powering its way through the main asteroid belt between Mars and Jupiter, Dawn continues on course and on schedule for its 2015 appointment with dwarf planet Ceres. After spending more than a year orbiting and scrutinizing Vesta, the second most massive object in the asteroid belt, the robotic explorer has its sights set on the largest object between the sun and Neptune that a spacecraft has not yet visited. This exotic expedition to unveil mysterious alien worlds would be impossible without the probe’s ion propulsion system.

Ion propulsion is not a source of power for this interplanetary spaceship. Rather, the craft needs a great deal of power to operate its ion propulsion system and all other systems. It needs so much that…

We crave power!!

The ion propulsion system is power-hungry. The process of ionizing xenon and then accelerating it to high velocity consumes a significant amount of electrical power, all of which is provided by the spacecraft’s huge solar arrays. With these two wings and its ion tail, Dawn resembles a celestial dragonfly. But this extraterrestrial odonate is a giant, with a wingspan of 19.7 meters (nearly 65 feet). When it was launched in 2007, this was the greatest tip-to-tip length of any probe NASA had ever dispatched on an interplanetary voyage. (Some such spacecraft have had flexible wire-like antennas that reach to greater lengths.) The large area of solar cells is needed to capture feeble sunlight in the remote asteroid belt to meet all of the electrical needs. Each solar array wing is the width of a singles tennis court, and the entire structure would extend from a pitcher’s mound to home plate on a professional baseball field, although Dawn is engaged in activities considerably more inspiring and rewarding than competitive sports.

To sail the ship to its intended destination, navigators plot a complex course on the solar system sea. The thrust delivered by the ion engine depends on the power level; higher power translates into higher (but still ever so gentle) thrust. The farther Dawn is from the luminous sun, the less power is available, so the thrust is lower. Therefore, to keep it on its itinerary, mission planners need to know the thrust at all times in the future. It would not be a recipe for success to propel the spacecraft to a position in space from which it could not achieve enough thrust to accomplish the rest of the carefully designed journey to Ceres.

To formulate the flight plan then requires knowing how much power will be available even as the probe ventures farther from the sun. Engineers make mathematical predictions of the power the solar arrays will generate, but these calculations are surprisingly difficult. Well, perhaps some readers would not be surprised, but it is more complicated than simply reducing the power in proportion to the intensity of the sunlight. As one example, at greater distances from the sun, the temperature of the arrays in the cold depths of space would be even lower, and the efficiency of the solar cells depends on their temperature. In 2008, the operations team devised and implemented a method to refine their estimates of the solar array performance, and that work enabled the deep-space traveler to arrive at Vesta earlier and depart later. Now they have developed a related but superior technique, which the faithful spacecraft executed flawlessly on June 24.

The only way to measure the power generation capability of the arrays is to draw power from them. With the ion thrust off, even with all other systems turned on, the spacecraft cannot consume as much power as the arrays can provide, so no meaningful measurement would be possible.

In typical operations, Dawn keeps its solar arrays pointed directly at the sun. For this special calibration, it rotated them so the incident sunlight came at a different angle. This reduced the total amount of light falling on the cells, effectively creating the conditions the spacecraft will experience when it has receded from the sun. As the angle increased, corresponding to greater distances from the brilliant star, the arrays produced less power, so the ion engine had to be throttled down. (The engines can be operated at 112 different throttle levels, each with a different input power and different thrust level.)

Engineers estimated what the maximum throttle level would be at each of the angles as well as the total power all other systems would consume during the test and then programmed it so the ion propulsion system would throttle down appropriately as the solar array angle increased. Of course, they could not know exactly what the highest throttle level at each angle would be; if they did, then they would already know the solar array characteristics well enough that the calibration would be unnecessary. Fortunately, however, they did not need to determine the perfect levels in advance. The sophisticated robot is smart enough to reduce by a few throttle levels if it detects that all systems combined are drawing more power than the solar arrays generate.

Under normal circumstances, the spacecraft doesn’t need to adjust the ion throttle level on its own. Engineers know the solar array performance well enough that they can predict the correct setting with high accuracy for a typical four-week sequence of commands stored onboard. It is only for the much greater distances from the sun in the years ahead that the uncertainty becomes important. In addition, during regular operations, if the spacecraft temporarily needs to use more heaters than usual (more than 140 heaters are distributed around the ship, each turning on and off as needed), thereby increasing the power demand, its battery can make up for the difference. That avoids unnecessary throttle changes.

› Continue reading Marc Rayman’s Dawn Journal


Slice of History: Seasat Sensors

Wednesday, July 3rd, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Seasat Sensors
Seasat Sensors — Photograph Number 271-365Acc

The Seasat project was a feasibility demonstration of the use of orbital remote sensing for global observation. It was launched on June 26, 1978 and carried five sensors:

– The Radar Altimeter (ALT) measured wave height at the subsatellite point and the altitude between the spacecraft and the ocean surface. The altitude measurement was precise to within ±10 cm (4 in.). The altitude measurement, when combined with accurate orbit determination information, produced an accurate image of the sea surface topography.

– The Seasat (Fan-Beam) Scatterometer System (SASS) measured sea surface wind speeds and directions at close intervals from which vector wind fields could be derived on a global basis.

– The Scanning Multichannel Microwave Radiometer (SMRR) measured wind speed, sea surface temperature to an accuracy of ±2°C, and atmospheric water vapor and liquid water content.

– The Synthetic Aperture Radar (SAR) was an imaging radar that provided images of the ocean surface from which could be determined ocean wave patterns, water and land interaction data in coastal regions, and radar imagery of sea and fresh water ice and snow cover.

– The Visual and Infrared Radiometer (VIRR) objective was to provide low-resolution images of visual and infrared radiation emissions from ocean, coastal and atmospheric features in support of the microwave sensors. Clear air temperatures were also measured.

This 1978 illustration was based on a painting, probably by artist Ken Hodges. He created artwork for many different Jet Propulsion Laboratory missions in the 1970s and 1980s, before computer aided animation was used for mission presentations and outreach.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


For Dawn, a Little Push Goes a Long Way

Monday, July 1st, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Dawnamic Readers,

The indefatigable Dawn spacecraft is continuing its extraordinary interplanetary flight on behalf of inquisitive creatures on distant Earth. Progressing ever farther from Vesta, the rocky and rugged world it so recently explored, the ship is making good progress toward its second port of call, dwarf planet Ceres.

We have seen in many logs that this adventure would be quite impossible without its advanced ion propulsion system. Even a mission only to orbit Vesta, which Dawn has accomplished with such stunning success, would have been unaffordable in NASA’s Discovery Program without ion propulsion. This is the only probe ever to orbit an object in the main asteroid belt between Mars and Jupiter. But now, thanks to this sophisticated technology, it is going beyond even that accomplishment to do something no other spacecraft has attempted. Dawn is the only mission ever targeted to orbit two extraterrestrial destinations, making it truly an interplanetary spaceship.

Ion Propulsion System Hot Fire Test for Deep Space 1
Ion Propulsion System Hot Fire Test for the Deep Space 1 spacecraft. Image credit: NASA/JPL-Caltech

Ion propulsion is 10 times more efficient than conventional chemical propulsion, so it enables much more ambitious missions. It uses its xenon propellant so parsimoniously, however, that the thrust is also exceptionally gentle. Indeed, the ion engine exerts about as much force on the spacecraft as you would feel if you held a single sheet of paper in your hand. At today’s thrust level, it would take more than five days to accelerate from zero to 60 mph. While that won’t rattle your bones, in the frictionless, zero-gravity conditions of spaceflight, the effect of the thrust gradually accumulates. Instead of thrusting for five days, Dawn thrusts for years. Ion propulsion delivers acceleration with patience, and patience is among this explorer’s many virtues.

To accomplish its mission, Dawn is outfitted with three ion engines. In the irreverent spirit with which this project has always been conducted, the units are fancifully known as #1, #2, and #3. (The locations of the thrusters were disclosed in a log shortly after launch, once the spacecraft was too far from Earth for the information to be exploited for tawdry sensationalism.) For comparison, the Star Wars TIE fighters were Twin Ion Engine ships, so now science fact does one better than science fiction. On the other hand, the TIE fighters employed a design that did seem to provide greater agility, perhaps at the expense of fuel efficiency. Your correspondent would concur that when you are trying to destroy your enemy while dodging blasts from his laser cannons, economy of propellant consumption probably isn’t the most important consideration.

At any rate, Dawn only uses one ion engine at a time. Since August 31, 2011, it has accomplished all of its thrusting with thruster #3. That thruster propelled Dawn along its complex spiral path down from an altitude of 2,700 kilometers (1,700 miles) to 210 kilometers (130 miles) above Vesta’s dramatic landscape and then back up again. Eventually, the engine pushed Dawn out of orbit, and it has continued to work to reshape the spacecraft’s heliocentric course so that it ultimately will match Ceres’s orbit around the sun.

Although any of the thrusters can accomplish the needed propulsion, and all three are still healthy, engineers consider many factors in deciding which to use at different times in the mission. Now they have decided to put #2 back to work. So on June 24, after its regular monthly hiatus in thrusting to point the main antenna to Earth for a communications session, the robotic explorer turned to aim that thruster, rather than thruster #3, in the direction needed to continue the journey to Ceres. Despite not being operated in nearly two years, #2 came to life as smoothly as ever. It is now emitting a blue-green beam of xenon ions as the craft has its sights set on the mysterious alien world ahead.

› Continue reading Marc Rayman’s Dawn Journal