Author Archive

Slice of History: Ranger Impact Limiter

Monday, November 4th, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Ranger Impact Limiter
Ranger Impact Limiter — Photograph number 292-41A

This photo was taken in November 1960 to show the lightweight balsa wood impact limiter that was to be used in the NASA Jet Propulsion Laboratory’s Ranger Block II spacecraft design (Rangers 3, 4, and 5). The woman holding the sphere is Systems Design secretary Pat McKibben. The sphere was 65 cm in diameter, and it surrounded a transmitter and a seismometer instrument that was designed by the Caltech Seismological Laboratory. The sphere would separate from the spacecraft shortly before impact and survive the rough landing on the moon. The capsule was also vacuum-filled with a protective fluid to reduce movement during impact. After landing, the instrument was to float to an upright position, then the fluid would be drained out so it could settle and switch on.

Due to a series of malfunctions in 1962, these three Ranger spacecraft either crashed without returning data or missed the moon. In July 1964, the first successful Ranger spacecraft, Ranger 7, reached the moon and transmitted more than 4,000 images to Earth.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: Mariner 4 Television Experiment Team

Tuesday, September 3rd, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Mariner 4 Television Experiment Team
Mariner 4 Television Experiment Team — Photograph number P-5005B

Because the data return rate from Mariner 4 was very low, the Mariner 4 Television Experiment Team spent hours waiting for each new image to appear. In this photo they are waiting for the first picture from Mars. Mariner eventually returned 22 images. From left to right: Robert Nathan (NASA’s Jet Propulsion Laboratory), Bruce Murray (associate professor of planetary science), Robert Sharp (Caltech), Robert Leighton (principal investigator), and Clayton La Baw (JPL).

Murray had been a member of the Caltech faculty for about five years when this photo was taken in July 1965. He went on to replace William Pickering as Director of JPL in 1976, retired from that position in 1982, and returned to Caltech.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: Hadamard Matrix

Thursday, August 1st, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Hadamard Matrix
Hadamard Matrix — Photograph Number 331-3717Ac

In 1961, mathematicians from NASA’s Jet Propulsion Laboratory and Caltech worked together to construct a Hadamard Matrix containing 92 rows and columns, with combinations of positive and negative signs. In a Hadamard Matrix, if you placed all the potential rows or columns next to each other, half of the adjacent cells would be the same sign, and half would be the opposite sign. This mathematical problem had been studied since about 1893, but the solution to the 92 by 92 matrix was unproven until 1961 because it required extensive computation.

From left to right, holding a framed representation of the matrix, are Solomon Golomb, assistant chief of the Communications Systems Research Section; Leonard Baumert, a postdoc student at Caltech; and Marshall Hall, Jr., a Caltech mathematics professor. In a JPL press release, Sol Golomb pointed out the possible significance of the discovery in creating codes for communicating with spacecraft.

The team used JPL’s IBM 7090 computer, programmed by Baumert, to perform the computations.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: Seasat Sensors

Wednesday, July 3rd, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Seasat Sensors
Seasat Sensors — Photograph Number 271-365Acc

The Seasat project was a feasibility demonstration of the use of orbital remote sensing for global observation. It was launched on June 26, 1978 and carried five sensors:

– The Radar Altimeter (ALT) measured wave height at the subsatellite point and the altitude between the spacecraft and the ocean surface. The altitude measurement was precise to within ±10 cm (4 in.). The altitude measurement, when combined with accurate orbit determination information, produced an accurate image of the sea surface topography.

– The Seasat (Fan-Beam) Scatterometer System (SASS) measured sea surface wind speeds and directions at close intervals from which vector wind fields could be derived on a global basis.

– The Scanning Multichannel Microwave Radiometer (SMRR) measured wind speed, sea surface temperature to an accuracy of ±2°C, and atmospheric water vapor and liquid water content.

– The Synthetic Aperture Radar (SAR) was an imaging radar that provided images of the ocean surface from which could be determined ocean wave patterns, water and land interaction data in coastal regions, and radar imagery of sea and fresh water ice and snow cover.

– The Visual and Infrared Radiometer (VIRR) objective was to provide low-resolution images of visual and infrared radiation emissions from ocean, coastal and atmospheric features in support of the microwave sensors. Clear air temperatures were also measured.

This 1978 illustration was based on a painting, probably by artist Ken Hodges. He created artwork for many different Jet Propulsion Laboratory missions in the 1970s and 1980s, before computer aided animation was used for mission presentations and outreach.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: Infrared Ear Thermometer

Wednesday, May 8th, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Infrared ear thermometer
Infrared Ear Thermometer — Photograph Number JPL-17459Ac

In 1991, Diatek Corporation of San Diego put a new infrared thermometer - Model 7000 - on the market. Early electronic thermometers had been used by some hospitals and doctors’ offices for several years before that time, but this Diatek model was a pioneering effort to modify space-based infrared sensors for a medical infrared thermometer. The underlying technology was developed by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., for missions including the Infrared Astronomical Satellite, or IRAS. IRAS measured the temperature of stars and planets by reading the infrared radiation emitted from them, while the thermometer almost instantly determined body temperature by measuring the energy emitted from the eardrum - quite an advancement in medical technology. Diatek was part of the JPL Technology Affiliates Program, or TAP, in the late 1980s and received help from JPL personnel in adapting infrared sensor technology to this new product.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: 100 Kilogauss Magnet

Wednesday, April 3rd, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

100 kilogauss magnet
100 kilogauss magnet — Photograph Number 328-430Ac

An intense magnetic field facility was completed in 1964 by the Physics Section of the Space Sciences Division at NASA’s Jet Propulsion Laboratory. It was intended for use in studying superconductors, spectroscopy and new materials, and in other experiments where a wider range of measurements was possible because of the high magnetic field. This photo shows the magnet at center. The system also included a control room, cooling tower, pumps and a heat exchanger. The generator was located in a separate room because of the noise. Water was pumped through the magnet at about 440 gallons per minute, to regulate the temperature of the large copper coil in the center of the magnet. The closed loop system contained distilled water with sodium nitrite for corrosion control.

According to a technical report about the facility, the magnetic field of the magnet and bus bars penetrated nearby rooms to a depth of about 30 feet. Any iron that could be attracted to the magnet had to be removed from the area.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: Granite Oil Slip Table

Tuesday, February 5th, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Granite Oil Slip Table
Granite Oil Slip Table — Photograph Number P-2784Ac

In 1963, spacecraft vibration tests were conducted in the Environmental Laboratory at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. A slab of granite, coated in oil, provided a smooth and stable base for the magnesium slip plate, test fixture and Ranger 6 spacecraft mounted on it. There were vibration exciters (shakers) on each end, capable of more than 25,000 pounds of force. The horizontal fixture at left was used for low frequency vibration testing, and the equipment was capable of testing along all three spacecraft axes.

During the 1960s, Ranger, Surveyor and Mariner spacecraft were developed, built and tested at JPL. Because of the heavy use, a similar but smaller test fixture was used for vibration tests on spacecraft components and assemblies. Building 144 still contains test facilities, but this equipment was removed and the room now contains an acoustic chamber.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: Viking Stereo Viewer

Tuesday, December 4th, 2012

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Viking Stereo ViewerViking Stereo Viewer — Photograph Number 324-1954

This interactive computer-based stereo viewing system was used to analyze Mars topography images generated by the cameras on NASA’s Viking 1 Mars lander. Two 17-inch video monitors faced a scanning stereoscope mounted between them on a table. Left and right lander camera image data were sent to the left and right monitors. Panning controls on the stereoscope helped align one image with the other to create a stereo image, 640 by 512 pixels in size. A mouse was used for finely controlled rotation of the monitors. An article about the system described a prototype mouse, used before this photo was taken in 1976. “The track ball is a baseball-sized sphere protruding from the top of a retaining box and capable of being rotated freely and indefinitely about its center …”

The resulting images could be displayed on additional monitors and were used to create contour maps and other images that aided lander surface operations. The system was developed by Stanford University and NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: 1944 Map of JPL

Thursday, November 1st, 2012

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

1944 Map of JPL1944 Map of JPL — Photograph Number HC 3-1294

On October 31, NASA’s Jet Propulsion Laboratory in Pasadena, Calif., celebrated its 76th anniversary. It began with a few individuals working on the Caltech campus and testing rocket motors in the Arroyo Seco. By the time this 1944 map of “The Project” was created, JPL was supported by Army Air Corps contracts and the site included more than 50 offices, labs and test facilities.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Slice of History: Is It a JPL Magic Trick?

Tuesday, October 9th, 2012

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

magnetic bearing
Is it a JPL magic trick? — Photograph 328-161Ac

In 1960 through 1961, several different experiments were conducted at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in search of a frictionless bearing for use in space applications, gyroscopes and other machinery. There were cryogenic, gas and electrostatic types of bearings, and the photo above shows a magnetic bearing. It was suspended by counterbalancing the force of gravity and an electromagnet. A servo feedback system continually corrected the current flow through the electromagnet to keep it stable.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.