Posts Tagged ‘Dawn’

It’s No Seven-Year Itch for Dawn: The Dwarf Planet Awaits

Saturday, September 27th, 2014

By Marc Rayman

As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Illustration of Dawn's journey to its target destinations
This illustration shows landmarks on Dawn’s voyage. After leaving Earth, the spacecraft flew past Mars to the giant protoplanet Vesta, where it spent 14 months in orbit. Now it is on its way to orbit dwarf planet Ceres. Image credit: NASA/JPL

Dear Dawnniversaries,

On the seventh anniversary of embarking upon its extraordinary extraterrestrial expedition, the Dawn spacecraft is far from the planet where its journey began. While Earth has completed its repetitive loops around the sun seven times, its ambassador to the cosmos has had a much more varied itinerary. On most of its anniversaries, including this one, it reshapes its orbit around the sun, aiming for some of the last uncharted worlds in the inner solar system. (It also zipped past the oft-visited Mars, robbing the red planet of some of its orbital energy to help fling the spacecraft on to the more distant main asteroid belt.) It spent its fourth anniversary exploring the giant protoplanet Vesta, the second most massive object in the asteroid belt, revealing a fascinating, complex, alien place more akin to Earth and the other terrestrial planets than to typical asteroids. This anniversary is the last it will spend sailing on the celestial seas. By its eighth, it will be at its new, permanent home, dwarf planet Ceres.

The mysterious world of rock and ice is the first dwarf planet discovered (129 years before Pluto) and the largest body between the sun and Pluto that a spacecraft has not yet visited. Dawn will take up residence there so it can conduct a detailed investigation, recording pictures and other data not only for scientists but for everyone who has ever gazed up at the night sky in wonder, everyone who is curious about the nature of the universe, everyone who feels the burning passion for adventure and the insatiable hunger for knowledge and everyone who longs to know the cosmos.

Dawn is the only spacecraft ever to orbit a resident of the asteroid belt. It is also the only ship ever targeted to orbit two deep-space destinations. This unique mission would be quite impossible without its advanced ion propulsion system, giving it capabilities well beyond what conventional chemical propulsion provides. That is one of the keys to how such a voyage can be undertaken.

For those who would like to track the probe’s progress in the same terms used on previous (and, we boldly predict, subsequent) anniversaries, we present here the seventh annual summary, reusing text from last year with updates where appropriate. Readers who wish to reflect upon Dawn’s ambitious journey may find it helpful to compare this material with the logs from its first, second, third, fourth, fifth and sixth anniversaries. On this anniversary, as we will see below, the moon will participate in the celebration.

In its seven years of interplanetary travels, the spacecraft has thrust for a total of 1,737 days, or 68 percent of the time (and about 0.000000034 percent of the time since the Big Bang). While for most spacecraft, firing a thruster to change course is a special event, it is Dawn’s wont. All this thrusting has cost the craft only 808 pounds (366 kilograms) of its supply of xenon propellant, which was 937 pounds (425 kilograms) on Sep. 27, 2007.

Photograph of the Dawn spacecraft blasting off
Dawn launched at dawn (7:34 a.m. EDT) from Cape Canaveral Air Force Station on Sep. 27, 2007. Its mission is to learn about the dawn of the solar system by studying the giant asteroid Vesta and dwarf planet Ceres. Image credit: KSC/NASA

The thrusting so far in the mission has achieved the equivalent of accelerating the probe by 22,800 mph (10.2 kilometers per second). As previous logs have described (see here for one of the more extensive discussions), because of the principles of motion for orbital flight, whether around the sun or any other gravitating body, Dawn is not actually traveling this much faster than when it launched. But the effective change in speed remains a useful measure of the effect of any spacecraft’s propulsive work. Having accomplished about seven-eighths of the thrust time planned for its entire mission, Dawn has already far exceeded the velocity change achieved by any other spacecraft under its own power. (For a comparison with probes that enter orbit around Mars, refer to this earlier log.)

Since launch, our readers who have remained on or near Earth have completed seven revolutions around the sun, covering 44.0 AU (4.1 billion miles, or 6.6 billion kilometers). Orbiting farther from the sun, and thus moving at a more leisurely pace, Dawn has traveled 31.4 AU (2.9 billion miles, or 4.7 billion kilometers). As it climbed away from the sun to match its orbit to that of Vesta, it continued to slow down to Vesta’s speed. It has been slowing down still more to rendezvous with Ceres. Since Dawn’s launch, Vesta has traveled only 28.5 AU (2.6 billion miles, or 4.3 billion kilometers), and the even more sedate Ceres has gone 26.8 AU (2.5 billion miles, or 4.0 billion kilometers). (To develop a feeling for the relative speeds, you might reread this paragraph by paying attention to only one set of units, whether you choose AU, miles, or kilometers. Ignore the other two scales so you can focus on the differences in distance among Earth, Dawn, Vesta and Ceres over the seven years. You will see that as the strength of the sun’s gravitational grip weakens at greater distance, the corresponding orbital speed decreases.)

Another way to investigate the progress of the mission is to chart how Dawn’s orbit around the sun has changed. This discussion will culminate with a few more numbers than we usually include, and readers who prefer not to indulge may skip this material, leaving that much more for the grateful Numerivores. (If you prefer not to skip it, click here.) In order to make the table below comprehensible (and to fulfill our commitment of environmental responsibility), we recycle some more text here on the nature of orbits.

Orbits are ellipses (like flattened circles, or ovals in which the ends are of equal size). So as members of the solar system family follow their paths around the sun, they sometimes move closer and sometimes move farther from it.

In addition to orbits being characterized by shape, or equivalently by the amount of flattening (that is, the deviation from being a perfect circle), and by size, they may be described in part by how they are oriented in space. Using the bias of terrestrial astronomers, the plane of Earth’s orbit around the sun (known as the ecliptic) is a good reference. Other planets and interplanetary spacecraft may travel in orbits that are tipped at some angle to that. The angle between the ecliptic and the plane of another body’s orbit around the sun is the inclination of that orbit. Vesta and Ceres do not orbit the sun in the same plane that Earth does, and Dawn must match its orbit to that of its targets. (The major planets orbit closer to the ecliptic, and part of the arduousness of the journey is changing the inclination of its orbit, an energetically expensive task.)

Now we can see how Dawn has been doing by considering the size and shape (together expressed by the minimum and maximum distances from the sun) and inclination of its orbit on each of its anniversaries. (Experts readily recognize that there is more to describing an orbit than these parameters. Our policy remains that we link to the experts’ websites when their readership extends to one more elliptical galaxy than ours does.)

The table below shows what the orbit would have been if the spacecraft had terminated ion thrusting on its anniversaries; the orbits of its destinations, Vesta and Ceres, are included for comparison. Of course, when Dawn was on the launch pad on Sep. 27, 2007, its orbit around the sun was exactly Earth’s orbit. After launch, it was in its own solar orbit.

Minimum distance from the Sun (AU) Maximum distance from the Sun (AU) Inclination
Earth’s orbit 0.98 1.02 0.0°
Dawn’s orbit on Sep. 27, 2007 (before launch) 0.98 1.02 0.0°
Dawn’s orbit on Sep. 27, 2007 (after launch) 1.00 1.62 0.6°
Dawn’s orbit on Sep. 27, 2008 1.21 1.68 1.4°
Dawn’s orbit on Sep. 27, 2009 1.42 1.87 6.2°
Dawn’s orbit on Sep. 27, 2010 1.89 2.13 6.8°
Dawn’s orbit on Sep. 27, 2011 2.15 2.57 7.1°
Vesta’s orbit 2.15 2.57 7.1°
Dawn’s orbit on Sep. 27, 2012 2.17 2.57 7.3°
Dawn’s orbit on Sep. 27, 2013 2.44 2.98 8.7°
Dawn’s orbit on Sep. 27, 2014 2.46 3.02 9.8°
Ceres’ orbit 2.56 2.98 10.6°

Illustration of Dawn's mission trajectory
This illustration shows Dawn’s interplanetary trajectory (in blue). The dates in white show Dawn’s location every September 27, starting on Earth in 2007. Note that Earth returns to the same location, taking one year to complete each revolution around the sun. As Dawn climbs farther from the sun, it orbits more slowly. Image credit: NASA/JPL

For readers who are not overwhelmed by the number of numbers, investing the effort to study the table may help to demonstrate how Dawn has patiently transformed its orbit during the course of its mission. Note that three years ago, the spacecraft’s path around the sun was exactly the same as Vesta’s. Achieving that perfect match was, of course, the objective of the long flight that started in the same solar orbit as Earth, and that is how Dawn managed to slip into orbit around Vesta. While simply flying by it would have been far easier, matching orbits with Vesta required the exceptional capability of the ion propulsion system. Without that technology, NASA’s Discovery Program would not have been able to afford a mission to explore it in such detail. But now, Dawn has gone even beyond that. Having discovered so many of Vesta’s secrets, the stalwart adventurer left the protoplanet behind. No other spacecraft has ever escaped from orbit around one distant solar system object to travel to and orbit still another extraterrestrial destination. A true interplanetary spaceship, Dawn is enlarging, reshaping and tilting its orbit again so that in 2015, it will be identical to Ceres’.

› Continue reading Marc Rayman’s Dawn Journal


How Dawn Will Get the Low-Down on the First Dwarf Planet Ever Discovered

Tuesday, September 2nd, 2014

By Marc Rayman

As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Illustration of Dawn's spiral transfer from HAMO to LAMO
This image illustrates Dawn’s spiral transfer from high altitude mapping orbit (HAMO) to low altitude mapping orbit (LAMO). The trajectory turns from blue to red as time progresses over two months. Red dashed sections are where ion thrusting is stopped so the spacecraft can point its main antenna toward Earth. Image credit: NASA/JPL-Caltech

Dear Omnipodawnt Readers,

Dawn draws ever closer to the mysterious Ceres, the largest body between the sun and Pluto not yet visited by a probe from Earth. The spacecraft is continuing to climb outward from the sun atop a blue-green beam of xenon ions from its uniquely efficient ion propulsion system. The constant, gentle thrust is reshaping its solar orbit so that by March 2015, it will arrive at the first dwarf planet ever discovered. Once in orbit, it will undertake an ambitious exploration of the exotic world of ice and rock that has been glimpsed only from afar for more than two centuries.

An important characteristic of this interplanetary expedition is that Dawn can linger at its destinations, conducting extensive observations. Since December, we have presented overviews of all the phases of the mission at Ceres save one. (In addition, questions posted by readers each month, occasionally combined with an answer, have helped elucidate some of the interesting features of the mission.) We have described how Dawn will approach its gargantuan new home (with an equatorial diameter of more than 600 miles, or 975 kilometers) and slip into orbit with the elegance of a celestial dancer. The spacecraft will unveil the previously unseen sights with its suite of sophisticated sensors from progressively lower altitude orbits, starting at 8,400 miles (13,500 kilometers), then from survey orbit at 2,730 miles (4,400 kilometers), and then from the misleadingly named high altitude mapping orbit (HAMO) only 910 miles (1,470 kilometers) away. To travel from one orbit to another, it will use its extraordinary ion propulsion system to spiral lower and lower and lower. This month, we look at the final phase of the long mission, as Dawn dives down to the low altitude mapping orbit (LAMO) at 230 miles (375 kilometers). We will also consider what future awaits our intrepid adventurer after it has accomplished the daring plans at Ceres.

It will take the patient and tireless robot two months to descend from HAMO to LAMO, winding in tighter and tighter loops as it goes. By the time it has completed the 160 revolutions needed to reach LAMO, Dawn will be circling Ceres every 5.5 hours. (Ceres rotates on its own axis in 9.1 hours.) The spacecraft will be so close that Ceres will appear as large as a soccer ball seen from less than seven inches (17 centimeters) away. In contrast, Earth will be so remote that the dwarf planet would look to terrestrial observers no larger than a soccer ball from as far as 170 miles (270 kilometers). Dawn will have a uniquely fabulous view.

As in the higher orbits, Dawn will scrutinize Ceres with all of its scientific instruments, returning pictures and other information to eager Earthlings. The camera and visible and infrared mapping spectrometer (VIR) will reveal greater detail than ever on the appearance and the mineralogical composition of the strange landscape. Indeed, the photos will be four times sharper than those from HAMO (and well over 800 times better than the best we have now from Hubble Space Telescope). But just as in LAMO at Vesta, the priority will be on three other sets of measurements which probe even beneath the surface.

All of the mass within Ceres combines to hold Dawn in orbit, exerting a powerful gravitational grip on the ship. But as the spacecraft moves through its orbit, any variations in the internal structure of Ceres from one place to another will lead to slight perturbations of the orbit. If, for example, there is a large region of unusually dense material, even if deep underground, the craft will speed up slightly as it travels toward it. After Dawn passes overhead, the same massive feature will slightly retard its progress, slowing it down just a little.

Dawn will be in almost constant radio contact with Earth during LAMO. When it is pointing its payload of sensors at the surface, it will broadcast a faint radio signal through one of its small auxiliary antennas so exquisitely sensitive receivers on a planet far, far away can detect it. At other times, in order to transmit its findings from LAMO, it will aim its main antenna directly at Earth. In both cases, the slightest changes in speed toward or away from Earth will be revealed in the Doppler shift, in which the frequency of the radio waves changes, much as the pitch of a siren goes up and then down as an ambulance approaches and then recedes. Using this and other remarkably powerful techniques mastered for traveling throughout the solar system, navigators will carefully plot the tiny variations in Dawn’s orbit and from that determine the distribution of mass throughout the interior of the dwarf planet.

The spacecraft will use its sophisticated gamma ray and neutron detector (GRaND) to determine the atomic constituents of the material on the surface and to a depth of up to about a yard (a meter). Gamma rays are a very, very high frequency form of electromagnetic radiation, beyond visible light, beyond ultraviolet, beyond even X-rays. Neutrons are very different from gamma rays. They are the electrically neutral particles in the nuclei of atoms, slightly more massive than protons, and in most elements, neutrons outnumber them too. It would be impressive enough if GRaND only detected these two kinds of nuclear radiation, but it also measures the energy of each kind. (Unfortunately, that description doesn’t lend itself to such a delightful acronym).

Most of the gamma rays and neutrons are byproducts of the collisions between cosmic rays (radiation from elsewhere in space) and the nuclei of atoms in the ground. (Cosmic rays don’t do this very much at Earth; rather, most are diverted by the magnetic field or stopped by atoms in the upper atmosphere.) In addition, some gamma rays are emitted by radioactive elements near the surface. Regardless of the source, the neutrons and the gamma rays that escape from Ceres and travel out into space carry a signature of the type of nucleus they came from. When GRaND intercepts the radiation, it records the energy, and scientists can translate those signatures into the identities of the atoms.

The radiation reaching GRaND, high in space above the surface, is extremely faint. Just as a camera needs a long exposure in very low light, GRaND needs a long exposure to turn Ceres’ dim nuclear glow into a bright picture. Fortunately, GRaND’s pictures do not depend on sunlight; regions in the dark of night are no fainter than those illuminated by the sun.

For most of its time in LAMO, Dawn will point GRaND at the surface beneath it. The typical pattern will be to make 15 orbital revolutions, lasting about 3.5 days, staring down, measuring each neutron and each gamma ray that encounters the instrument. Simultaneously, the craft will transmit its broad radio signal to reveal the gentle buffeting by the variations in the gravitational field. On portions of its flights over the lit terrain, it will take photos and will collect spectra with VIR. Then the spacecraft will rotate to point its main antenna to distant Earth, and while it makes five more circuits in a little more than a day, it will beam its precious discoveries to the 230-foot (70-meter) antennas at NASA’s Deep Space Network.

Illustration of Dawn's low altitude mapping orbit.
This image illustrates Dawn’s low altitude mapping orbit (LAMO) and how it naturally shifts slightly (relative to the sun) over three months, starting in blue and ending in red. The Dawn spacecraft completes each revolution in 5.5 hours, and Ceres rotates in 9.1 hours, so Dawn will be able to view the entire surface of the dwarf planet. Image credit: NASA/JPL-Caltech

Dawn will spend more time in each successive observational phase at Ceres than the ones before. After two months in HAMO, during which it will complete about 80 orbits, the probe will devote about three months to LAMO, looping around more than 400 times. That is more than enough time to collect the desired data. Taxpayers have allocated sufficient funds to operate Dawn until June 2016, allowing some extra time for the flight team to grapple with the inevitable glitches that arise in such a challenging undertaking. As in all phases, mission planners recognize that complex operations in that remote and hostile environment probably will not go exactly according to plan, but even if some of the measurements are not completed, enough should be to satisfy all the scientific objectives.

The indefatigable explorer will work hard in LAMO. Aiming its sensors at the surface beneath it throughout its 5.5-hour orbits does not happen naturally. Dawn needs to keep turning to point them down. When it is transmitting its scientific bounty, it needs to hold steady enough to maintain Earth in the sights of its radio antenna. An essential element of the design of the spacecraft to achieve these and related capabilities was the use of three reaction wheels. By electrically changing the speed at which these gyroscope-like devices rotate, the probe can turn or stabilize itself. Because they are so important, four were included, ensuring that if any one encountered difficulty, the ambitious mission could continue with the other three.

As long-time readers know, one did falter in August 2012. The failure of two such vital devices could have proven fatal for a mission, but thanks to the expertise, creativity, swiftness, and persistence of the members of the Dawn flight team, the prospects for completing the exploration of Ceres are bright.

› Continue reading Marc Rayman’s September 2014 Dawn Journal


Using the Force: Dawn Engineers Put to the Test

Friday, August 1st, 2014

By Marc Rayman

As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft and a TIE Fighter from 'Star Wars'
Artist’s comparison of the Dawn spacecraft, which has three ion engines, and a “Star Wars” TIE (Two Ion Engine) Fighter. Image credit: NASA/JPL

Dear Studawnts and Teachers,

Patient and persistent, silent and alone, Dawn is continuing its extraordinary extraterrestrial expedition. Flying through the main asteroid belt between Mars and Jupiter, the spacecraft is using its advanced ion propulsion system to travel from Vesta, the giant protoplanet it unveiled in 2011 and 2012, to Ceres, the dwarf planet it will reach in about eight months.

Most of these logs since December have presented previews of the ambitious plan for entering orbit and operating at Ceres to discover the secrets this alien world has held since the dawn of the solar system. We will continue with the previews next month. But now with Dawn three quarters of the way from Vesta to Ceres, let’s check in on the progress of the mission, both on the spacecraft and in mission control at JPL.

The mission is going extremely well. Thank you for asking.

For readers who want more details, read on …

The spacecraft, in what is sometimes misleadingly called quiet cruise, has spent more than 97 percent of the time this year following the carefully designed ion thrust flight plan needed to reshape its solar orbit, gradually making it more and more like Ceres’ orbit around the sun. This is the key to how the ship can so elegantly enter into orbit around the massive body even with the delicate thrust, never greater than the weight of a single sheet of paper.

The probe is equipped with three ion engines, although it only uses one at a time. (The locations of the engines were revealed shortly after launch when the spacecraft was too far from Earth for the information to be exploited for tawdry sensationalism.) Despite the disciplined and rigorous nature of operating a spaceship in the main asteroid belt, the team enjoys adding a lighthearted touch to their work, so they refer to the engines by the zany names #1, #2, and #3.

Darth Vader and his Empire cohorts in “Star Wars” flew TIE (Twin Ion Engine) Fighters in their battles against Luke Skywalker and others in the Rebel Alliance. Outfitted with three ion engines, Dawn does the TIE Fighters one better. We should acknowledge, however, that the design of the TIE Fighters did appear to provide greater agility, perhaps at the expense of fuel efficiency. Your correspondent would concur that when you are trying to destroy your enemy while dodging blasts from his laser cannons, economy of propellant consumption probably shouldn’t be your highest priority.

All three engines on Dawn are healthy, and mission controllers consider many criteria in formulating the plan for which one to use. This called for switching from thruster #2 to thruster #1 on May 27. Thruster #1 had last been used to propel the ship on Jan. 4, 2010. After well over four years of inaction in space, it came to life and emitted the famous blue-green beam of high velocity xenon ions right on schedule (at 4:19:19 pm PDT, should you wish to take yourself back to that moment), gently and reliably pushing the spacecraft closer to its appointment with Ceres.

Without the tremendous capability of ion propulsion, a mission to orbit either Vesta or Ceres alone would have been unaffordable within NASA’s Discovery program. A mission to orbit both destinations would be altogether impossible. The reason ion propulsion is so much more efficient than conventional chemical propulsion is that it can turn electrical energy into thrust. Chemical propulsion systems are limited to the energy stored in the propellants.

Thanks to Dawn’s huge solar arrays, electrical energy is available in abundance, even far from the brilliant sun. To make accurate predictions of the efficiency of the solar cells as Dawn continues to recede from the sun, engineers occasionally conduct a special calibration. As we described in more detail a year ago, they command the robot to rotate its panels to receive less sunlight, simulating being at greater solar distances, as the ion propulsion system is throttled to lower power levels. Following the first such calibration on June 24, 2013, we assured readers (including you) that we would repeat the calibration as Dawn continued its solar system travels. So you will be relieved to know that it was performed again on Oct. 14, Feb. 3, and May 27, and another is scheduled for Sept. 15. Having high confidence in how much power will be available for ion thrusting for the rest of the journey allows navigators to plot the best possible course. Dawn is on a real power trip!

The reason for going to Ceres, besides it being an incredibly cool thing to do, is to use the suite of sophisticated sensors to learn about this mysterious dwarf planet. (In December, we will describe what is known about Ceres, just in time for it to change with Dawn’s observations.) Controllers activated and tested the cameras and all the spectrometers this summer, verifying that they remain in excellent condition and as ready to investigate the uncharted lands ahead as they were for the fascinating lands astern. The engineers also installed updated software in the primary camera in June and are ready to install it in the backup camera next month to enhance some of the devices’ functions. All of the scientific instruments are normally turned off when Dawn is not orbiting one of its targets. They will be powered on again in October for a final health check before the approach phase, during which they will provide our first exciting new views of Ceres.

To achieve a successful mission at Ceres, in addition to putting the finishing touches on the incredibly intricate plans, the operations team works hard to take good care of the spacecraft, ensuring it stays healthy and on course. In the remote depths of space, the robot has to be able to function on its own most of the time, but it does so with periodic guidance and oversight by its human handlers on a faraway planet. That means they need to stay diligent, keep their skills sharp, and remain watchful for any indications of undesirable conditions. On July 22, the team received information showing that Dawn was in safe mode, a special configuration invoked by onboard software to protect the spacecraft and the mission, preventing unexpected situations from getting out of control.

As engineers inspected the trickle of telemetry, they began to discover that this was a more dire situation than they had ever seen for the distant craft. Among the surprises was an open circuit in one of the pressurized cells of the nickel-hydrogen battery, a portion of the reaction control system that was so cold that its hydrazine propellant was in danger of freezing, temperatures elsewhere on the spacecraft so low that the delicate cameras were at risk of being damaged, and a sun sensor with degraded vision. To make it still more complicated, waveguide transfer switch #5, used to direct the radio signal from the transmitter inside the spacecraft to one of its antennas for beaming to Earth, was stuck and so would not move when software instructed it to. Other data showed that part of the computer memory was compromised by space radiation. As if all that were not bad enough, one of the two star trackers, devices that recognize patterns of stars just as you might recognize constellations to determine your orientation at night without a compass or other aids, was no longer functional. Further complicating the effort to get the mission back on track was an antenna at the Deep Space Network that needed to be taken out of service for emergency repairs. And the entire situation was exacerbated by Dawn already being in its lowest altitude orbit around Ceres (the subject of next month’s log), so for part of every 5.5-hour orbital revolution, it was out of contact as the world beneath it blocked the radio signal.

Confronted with an almost bewildering array of complex problems, the team of experts spent three days working through them with their usual cool professionalism, ultimately finding ways to overcome each obstacle to continue the mission. It would be extraordinarily, even unbelievably, unlikely for so many separate problems to stack up so quickly, even for a ship in the severe conditions of deep space, more than 232 million miles (374 million kilometers) from Dawn mission control on the top floor of JPL’s building 264. However, it easily can happen in an operational readiness test (ORT, pronounced letter by letter and not as a word, for those readers who want to conduct their own ORTs). The telemetry came from the spacecraft simulator, just down the hall from the mission control room, and the problems were the fiendishly clever creations of the ORT mastermind. (So now you may calm down, reassured that the scenario just described did not actually happen.)

The team conducted ORTs (and even an ORTathon) before launch in 2007, before Vesta in 2011, and as recently as May 2013. They will hold another in August.

While mission controllers exercised their skills in the ORT, the real spacecraft continued streaking through the asteroid belt, its interplanetary travels bringing it 45 thousand miles (73 thousand kilometers) closer to Ceres each day. But it is not only the Dawn team members who are part of this adventure. The stalwart explorer is transporting everyone who ever gazes in wonder at the night sky, everyone who yearns to know what lies beyond the confines of our humble home, and everyone awed by the mystery, the grandeur, and the immensity of the cosmos. Fueled by their passionate longing, the journey holds the promise of exciting new knowledge and thrilling new insights as a strange world, glimpsed only from afar for more than two centuries, is soon to be unveiled.

Dawn is 4.2 million miles (6.7 million kilometers) from Ceres. It is also 2.67 AU (248 million miles, or 399 million kilometers) from Earth, or 995 times as far as the moon and 2.63 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 44 minutes to make the round trip

Dr. Marc D. Rayman
6:00 p.m. PDT July 31, 2014

› Read more of Marc Rayman’s Dawn Journals


Dawn’s Downward Spiral to Reveal New World Views

Tuesday, July 1st, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at Ceres
Artist’s concept of Dawn in its high altitude mapping orbit at dwarf planet Ceres. Credit: NASA/JPL

Dear Mastodawns,

Deep in the main asteroid belt, between Mars and Jupiter, far from Earth, far from the sun, far now even from the giant protoplanet Vesta that it orbited for 14 months, Dawn flies with its sights set on dwarf planet Ceres. Using the uniquely efficient, whisper-like thrust of its remarkable ion propulsion system, the interplanetary adventurer is making good progress toward its rendezvous with the uncharted, alien world in about nine months.

Dawn’s ambitious mission of exploration will require it to carry out a complex plan at Ceres. In December, we had a preview of the “fapproach phase,” and in January, we saw how the high velocity beam of xenon ions will let the ship slip smoothly into Ceres’s gravitational embrace. We followed that with a description in February of the first of four orbital phases (with the delightfully irreverent name RC3), in which the probe will scrutinize the exotic landscape from an altitude of 8,400 miles (13,500 kilometers). We saw in April how the spacecraft will take advantage of the extraordinary maneuverability of ion propulsion to spiral from one observation orbit to another, each one lower than the one before, and each one affording a more detailed view of the exotic world of rock and ice. The second orbit, at an altitude of about 2,730 miles (4,400 kilometers), known to insiders (like you, faithful reader) as “survey orbit,” was the topic of our preview in May. This month, we will have an overview of the plan for the third and penultimate orbital phase, the “high altitude mapping orbit” (HAMO).

(The origins of the names of the phases are based on ancient ideas, and the reasons are, or should be, lost in the mists of time. Readers should avoid trying to infer anything at all meaningful in the designations. After some careful consideration, your correspondent chose to use the same names the Dawn team uses rather than create more helpful descriptors for the purposes of these logs. What is important is not what the different orbits are called but rather what amazing new discoveries each one enables.)

It will take Dawn almost six weeks to descend to HAMO, where it will be 910 miles (1,470 kilometers) high, or three times closer to the mysterious surface than in survey orbit. As we have seen before, a lower orbit, whether around Ceres, Earth, the sun, or the Milky Way galaxy, means greater orbital velocity to balance the stronger gravitational grip. In HAMO, the spacecraft will complete each loop around Ceres in 19 hours, only one quarter of the time it will take in survey orbit.

In formulating the HAMO plans, Dawn’s human colleagues (most of whom reside much, much closer to Earth than the spacecraft does) have taken advantage of their tremendous successes with HAMO1 and HAMO2 at Vesta. We will see below, however, there is one particularly interesting difference.

As in all observation phases at Ceres (and Vesta), Dawn’s orbital path will take it from pole to pole and back. It will fly over the sunlit side as it travels from north to south and then above the side in the deep darkness of night on the northward segment of each orbit. This polar orbit ensures a view of all latitudes. As Ceres pirouettes on its axis, it presents all longitudes to the orbiting observer. The mission planners have choreographed the celestial pas de deux so that in a dozen revolutions, Dawn’s camera can map nearly the entire surface.

Graphic showing Dawn's spiral descent from survey orbit to HAMO
Dawn’s spiral descent from survey orbit to the high altitude mapping orbit. The trajectory progresses from blue to red over the course of the six weeks. The red dashed segments are where the spacecraft is not thrusting with its ion propulsion system (as explained in April). Credit: NASA/JPL

Rather than mapping once, however, the spacecraft will map Ceres up to six times. One of Dawn’s many objectives is to develop a topographical map, revealing the detailed contours of the terrain, such as the depths of craters, the heights of mountains, and the slopes and variations of plains. To do so, it will follow the same strategy employed so successfully at Vesta, by taking pictures at different angles, much like stereo imaging. The spacecraft will make its first HAMO map by aiming its camera straight down, photographing the ground directly beneath it. Then it will map the surface again with the camera pointed in a slightly different direction, and it will repeat this for a total of six maps, or six mapping “cycles.” With views from up to six different perspectives, the landscape will pop from flat images into its full three dimensionality. (As with all the plans, engineers recognize that complex and challenging operations in the forbidding, unforgiving depths of space do not always go as intended. So they plan to collect more data than they need. If some of the images, or even entire maps, are not acquired, there should still be plenty of pictures to use in revealing the topography.)

In addition to acquiring the photos, Dawn will make other measurements in HAMO. During some of the cycles, the camera will use its color filters to glean more about the nature of the surface. The visible and infrared mapping spectrometer will collect spectra to help scientists determine the composition of the surface, its temperature, and other properties.

Exquisitely accurate radio tracking of the spacecraft in its orbit, as indicated by the Doppler shift (the change in frequency, or pitch, as the craft moves toward or away from Earth) and by the time it takes radio signals to make the round trip from Earth, allows navigators to determine the strength of the gravitational tugging. That can be translated into not only the mass of Ceres but also how the mass is distributed in its interior. In August, when we look ahead to the fourth and final science phase of the Ceres mission, the low altitude mapping orbit, we will explain this in greater detail.

Although still too high for anything but the weakest indication of radiation from Ceres, the gamma ray and neutron detector will measure the radiation environment in HAMO. This will yield a useful reference for the stronger signals it will detect when it is closer.

There is a noteworthy difference between how Dawn will operate in HAMO and how it operated in HAMO1 and HAMO2 at Vesta and even how it will operate in survey orbit at Ceres.

› Continue reading Marc Rayman’s June 30, 2014, Dawn Journal


Survey Orbit: A Truly Extaordinary View

Tuesday, June 3rd, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Dear Dawnosaurs,

Silently streaking through the main asteroid belt, emitting a blue-green beam of xenon ions, Dawn continues its ambitious interplanetary expedition. On behalf of creatures on distant Earth who seek not only knowledge and insight but also bold adventure, the spacecraft is heading toward its appointment with Ceres. In about 10 months, it will enter orbit around the ancient survivor from the dawn of the solar system, providing humankind with its first detailed view of a dwarf planet.

This month we continue with the preview of how Dawn will explore Ceres. In December we focused on the “approach phase,” and in January we described how the craft spirals gracefully into orbit with its extraordinary ion propulsion system. The plans for the first observational orbit (with a marvelously evocative name for a first examination of an uncharted world: RC3 — is that cool, or what?), at an altitude of 8,400 miles (13,500 kilometers), were presented in FebruaryLast month, we followed Dawn on its spiral descent from each orbital altitude to the next, with progressively lower orbits providing better views than the ones before. Now we can look ahead to the second orbital phase, survey orbit.

Survey orbit

This figure shows Dawn’s second observational orbit, “survey orbit,” at the same scale as the size of Ceres. At an altitude of 2,730 miles (4,400 kilometers), the spacecraft will make seven revolutions in about three weeks. Image credit: NASA/JPL-Caltech
› Larger image

In survey orbit, Dawn will make seven revolutions at an altitude of about 2,730 miles (4,400 kilometers). At that distance, each orbit will take three days and three hours. Mission planners chose an orbit period close to what they used for survey orbit at Vesta, allowing them to take advantage of many of the patterns in the complex choreography they had already developed. Dawn performed it so beautifully that it provides an excellent basis for the Ceres encore. Of course, there are some adjustments, mostly in the interest of husbanding precious hydrazine propellant in the wake of the loss of two of the spacecraft’s four reaction wheels. (Although such a loss could have dire consequences for some missions, the resourceful Dawn team has devised a plan that can achieve all of the original objectives regardless of the condition of the reaction wheels.)

We had a preview of survey orbit at Vesta four years ago, and we reviewed the wonderfully successful outcome in September 2011. When we develop the capability to travel backwards in time, we will insert a summary of what occurred in survey orbit at Ceres here: _______…… Well, nothing yet. So, let’s continue with the preview.

As in all phases at Ceres (and Vesta), Dawn follows what space trajectory experts (and geeks) call a polar orbit. The ship’s course will take it above the north pole, and then it will sail south over the side bathed in the light of the sun. After flying over the south pole, Dawn will head north. Although the surface beneath it will be dark, the spacecraft will be high enough that it will not enter the dwarf planet’s shadow. The distant sun will constantly illuminate the large solar arrays.

The leisurely pace in survey orbit allows the explorer to gather a wealth of data during the more than 37 hours on the day side. It will train its science camera and visible and infrared mapping spectrometer (VIR) on the surface lit by the sun. The camera will collect hundreds of images using all seven of its color filters. It will reveal details three times finer than it observed in RC3 orbit and 70 times sharper than the best we have from the Hubble Space Telescope. VIR will acquire millions of spectra to help scientists determine the minerals present as well as the temperature and other properties of the surface. While the sensors are pointed at the surface, the main antenna cannot simultaneously be aimed at Earth, so the robot will store its pictures and spectra.

One Cerean day, the time it takes Ceres to rotate once on its axis, is a little over nine hours. (For comparison, Earth, as some of its residents and visitors know, takes 24 hours. Jupiter turns in just under 10 hours, Vesta in five hours and 21 minutes, and your correspondent’s cat Regulus in about 0.5 seconds when chasing a laser spot.) So as Dawn travels from the north pole to the south pole, Ceres will spin underneath it four times. Dawn will be close enough that even the wide field of view of its camera won’t capture the entire disc below, from horizon to horizon, but over the course of the seven orbits, the probe will see most of the surface. As in developing the plan for Vesta, engineers (like certain murine rodents and male humans) are keenly aware that as careful, as thorough, and as diligent as they are, their schemes don’t always execute perfectly. In the unknown, forbidding depths of space with a complex campaign to carry out, glitches can occur and events can go awry. The plan is designed with the recognition that some observations will not be achieved, but those that are promise great rewards.

Artist's concept of Dawn orbiting Ceres

Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Image credit: NASA/JPL-Caltech

Most of the time, the spacecraft will gaze straight down at the alien terrain immediately beneath it. But on the first, second, and fourth passages over the day side of Ceres, it will spend some of the time looking at the limb against the blackness of space. Pictures with this perspective will not only be helpful for establishing the exact shape of the dwarf planet but they also will provide some very appealing views for eager sightseers on Earth.

In addition to using the camera and VIR, Dawn will measure space radiation with its gamma ray and neutron detector (GRaND). GRaND will still be too far from Ceres to sense the nuclear particles emanating from it, but recording the radiation environment will provide a valuable context for the sensitive measurements it will make at lower altitudes.

When Dawn’s orbit takes it over the dark side, it will turn away from the dwarf planet it is studying and toward the planet it left in 2007 where its human colleagues still reside. With its 5-foot (1.52-meter) main antenna, it will spend most of the day and a half radioing its precious findings across uncounted millions of miles (kilometers) of interplanetary space. (Well, you won’t have to count them, but we will.)

In addition to the instrument data it encodes, Dawn’s radio signal will allow scientists and engineers to measure how massive Ceres is. By observing the Doppler shift (the change in frequency caused by the spacecraft’s motion), they can determine how fast the ship moves in orbit. Timing how long the signals (traveling at the universal limit of the speed of light) take to make the round trip, navigators can calculate how far the probe is and hence where it is in its orbit. Combining these (and including other information as well) allows them to compute how strongly Ceres pulls on its orbital companion. The strength of its gravitational force reveals its heft.

By the end of survey orbit, Dawn will have given humankind a truly extraordinary view of a dwarf planet that has been cloaked in mystery despite more than 200 years of telescopic studies. As the exotic world of rock and ice begins to yield its secrets to the robotic ambassador from Earth, we will be transported there. We will behold new landscapes that will simultaneously quench our thirst for exploration and ignite our desire for even more. It is as humankind reaches ever farther into the universe that we demonstrate a part of what it means to be human, combining our burning need for greater understanding with our passion for adventure and our exceptional creativity, resourcefulness and tenacity. As we venture deeper into space, we discover much of what lies deep within ourselves.

Dawn is 7.2 million miles (12 million kilometers) from Ceres. It is also 1.87 AU (174 million miles, or 280 million kilometers) from Earth, or 695 times as far as the moon and 1.84 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 31 minutes to make the round trip.

› Continue reading Marc Rayman’s May 31, 2014, Dawn Journal


Riding the Spiral: Navigating a New World

Wednesday, April 30th, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft
Dawn will use its ion propulsion system to change orbits at Ceres, allowing it to observe the dwarf planet from different vantage points. Image credit: NASA/JPL-Caltech
› Larger image

Dear Compedawnt Readers,

Less than a year from its rendezvous with dwarf planet Ceres, Dawn is continuing to make excellent progress on its ambitious interplanetary adventure. The only vessel from Earth ever to take up residence in the main asteroid belt between Mars and Jupiter, the spacecraft grows more distant from Earth and from the sun as it gradually closes in on Ceres. Dawn devotes the majority of its time to thrusting with its remarkable ion propulsion system, reshaping its heliocentric path so that by the time it nears Ceres, the explorer and the alien world will be in essentially the same orbit around the sun.

In December, we saw what Dawn will do during the “approach phase”; to Ceres early in 2015, and in January, we reviewed the unique and graceful method of spiraling into orbit. We described in February the first orbit (with the incredibly cool name RC3) from which intensive scientific observations will be conducted, at an altitude of 8,400 miles (13,500 kilometers). But Dawn will take advantage of the extraordinary capability of ion propulsion to fly to three other orbital locations from which it will further scrutinize the mysterious world.

Let’s recall how the spacecraft will travel from one orbit to another. While some of these plans may sound like just neat ideas, they are much more than that; they have been proven with outstanding success. Dawn maneuvered extensively during its 14 months in orbit around Vesta. (One of the many discussions of that was in November 2011.) The seasoned space traveler and its veteran crew on distant Earth are looking forward to applying their expertise at Ceres.

As long-time readers of these logs know so well, the ion thrust is uniquely efficient but also extremely low. Ion propulsion provides acceleration with patience. Ultimately the patience pays off, enabling Dawn to accomplish feats far beyond what any other spacecraft has ever had the capability to do, including orbiting two extraterrestrial destinations. The gentle thrust, comparable to the weight of a single sheet of paper, means it takes many weeks to maneuver from one observational orbit to another. Of course, it is worthwhile to spend that much time, because each of the orbital phases is designed to provide an exciting trove of scientific data.

Those of you who have navigated around the solar system, as well as others who have contemplated the nature of orbits without having practical experience, recognize that the lower the orbital altitude, the faster the orbital motion. This important principle is a consequence of gravity’s strength increasing as the distance between the massive body and the orbiting object decreases. The speed has to be higher to balance the stronger gravitational pull. (For a reminder of some of the details, be sure to go here before you go out for your next orbital expedition.)

While Dawn slowly reduces its altitude under the faint pressure of its ion engine, it continues circling Ceres, orbiting in the behemoth’s gravitational grip. The effect of combining these motions is that the path from one altitude to another is a spiral. And as Dawn descends and zips around Ceres faster and faster, the spirals get tighter and tighter.

Illustration of Dawn's orbits from RC3 to survey orbit
RC3 to survey: Dawn will make five spiral loops during the month it will take to fly from its RC3 orbit (at 8,400 miles, or 13,500 kilometers) to survey orbit (at 2,700 miles, or 4,400 kilometers). Image credit: NASA/JPL-Caltech
› Larger image

The first coils around Ceres will be long and slow. After completing its investigations in RC3, the probe will spiral down to”survey orbit,”; about 2,700 miles (4,400 kilometers) above the surface. During that month-long descent, it will make only about five revolutions. After three weeks surveying Ceres from that new vantage point, Dawn will follow a tighter spiral down to the (misleadingly named) high altitude mapping orbit (HAMO) at 910 miles (1,470 kilometers). In the six-week trip to HAMO, the craft will wind around almost 30 times. It will devote two months to performing extensive observations in HAMO. And finally as 2015 draws to a close, it will fly an even more tightly wound course to reach its low altitude mapping orbit (LAMO) at 230 miles (375 kilometers), where it will collect data until the end of the mission. The ship will loop around 160 times during the two months to go from HAMO to LAMO. (We will preview the plans for survey orbit, HAMO and LAMO in May, July and August of this year, and if all goes well, we will describe the results in 2015 and 2016.)

Designing the spiral trajectories is a complex and sophisticated process. It is not sufficient simply to activate the thrust and expect to arrive at the desired destination, any more than it is sufficient to press the accelerator in your car and expect to reach your goal. You have to steer carefully (and if you don’t, please don’t drive near me), and so does Dawn. As the ship revolves around Ceres, it must constantly change the pointing of the blue-green beam of high velocity xenon ions to stay on precisely the desired winding route to the targeted orbit. The mission control team at JPL will program the ship to orient its thruster in just the right direction at the right time to propel itself on the intended spiraling course.

Illustration of Dawn's orbits from HAMO to LAMO
HAMO to LAMO: Dawn will complete 160 revolutions in two months as it follows a tight spiral from HAMO (at 910 miles, or 1,470 kilometers) to LAMO (at 230 miles, or 375 kilometers). Image credit: NASA/JPL-Caltech
› Larger image

Aiming a thruster in the direction needed to spiral around Ceres requires turning the entire spacecraft. Each thruster is mounted on its own gimbal with a limited range of motion. In normal operation, the gimbal is positioned so that the line of thrust goes through the center of the ship. When the gimbal is swiveled to another direction, the gentle force from the ion engine causes the ship to rotate slowly. This is similar to the use of an outboard motor on a boat. When it is aligned with the centerline of the boat, the craft travels straight ahead. When the motor is turned, it continues to propel the boat but also turns it. In essence, Dawn’s steering of its thrust is accomplished by pivoting the ion engine.

A crucial difference between the boat and our interplanetary ship is that with the former, the farther the motor is turned, the tighter the curving course. (Another difference is that the spacecraft wouldn’t float.) Dawn doesn’t have that liberty. For our craft, the gimballing of the thruster needs to be carefully coordinated with the orbital motion, as if the motorboat operator needed to compensate for a curving current. This has important implications at Ceres. Sophisticated as it is, Dawn knows its own location in orbit only by virtue of information mission controllers install onboard to predict where it will be at any time. That is based on their best computations of Ceres’ gravity, the planned operation of the ion propulsion system, and many other considerations, but it will never be perfectly accurate. Let’s take a look at two of the reasons.

Ceres, like Vesta, Earth, the moon, Mars, and other planets or planetary-type bodies, has a complex gravity field. The distribution of materials of different densities within the interior creates variations in the strength of the gravitational force, so Dawn will feel a slightly changing tug from Ceres as it travels in orbit. But there is a noteworthy difference between Ceres’ gravity field and the fields of those other worlds: Ceres’ field is unknown. We will have to measure it as we go. The subtle irregularities in gravity as Dawn descends will cause small deflections from the planned trajectory. Our ship will be traversing unknown, choppy waters.

Other phenomena will lead to slight discrepancies as well. The ion propulsion system will be responsible for changing the orbit, so even tiny deviations from the intended thrust eventually may build up to have a significant effect. This is no different from any realistic electrical or mechanical system, which is sure to have imperfections. If you planned a trip in which you would drive 60.0 miles (96.6 kilometers) at 60.0 mph (96.6 kilometers per hour), you could expect to arrive in exactly 60.0 minutes. (No surprises there, as it isn’t exactly rocket science.) But even if you maintained the speedometer as close to 60 as you could, it would not be accurate enough to indicate the true speed. If your actual speed averaged 60.4 mph (97.2 kilometers per hour), you would arrive 24 seconds early. Perhaps that difference wouldn’t matter to you (and if it did, you might consider replacing your car with a spaceship), but such minuscule errors, when compounded by Dawn’s repeated spirals around Ceres, would make a difference in achieving its carefully chosen orbit.

As a result of these and other effects, mission controllers will need to adjust the complex flight plan as Dawn travels from one observational orbit to another. So it will thrust for a few days and then stop to allow navigators to get a new fix on its position. When it points its main antenna to Earth, the Doppler shift of its radio signal will reveal its speed, and the time for radio signals (traveling, as all readers know so well, at the universal limit of the speed of light) to make the round trip will yield its distance. Combining those measurements with other data, mission controllers will update the plan for where to point the thruster at each instant during the next phase of the spiral, check it, double check it, and transmit it to the faraway robot, which will then put it into action. This intensive process will be repeated every few days as Dawn maneuvers to lower orbits.

The flight team succeeded brilliantly in performing this kind of work at Vesta, but they will encounter some differences at Ceres.

› Continue reading Marc Rayman’s April 30, 2014, Dawn Journal


So Close, Yet So Far Away: Dawn’s Trajectory Explained

Monday, March 31st, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft
Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. Image credit: NASA/JPL
› Larger image

Dear Correspondawnts,

Powering its way through deep space, Dawn draws ever closer to dwarf planet Ceres. To reach its destination, the interplanetary spaceship gently reshapes its path around the sun with its extraordinary ion propulsion system. In about a year, the spacecraft will gracefully slip into orbit so it can begin to unveil the nature of the mysterious world of rock and ice, an intriguing protoplanetary remnant from the dawn of the solar system.

Even as Dawn ascends the solar system hill, climbing farther and farther from the sun, penetrating deeper into the main asteroid belt between Mars and Jupiter, its distance to Earth is shrinking. This behavior may be perplexing for readers with a geocentric bias, but to understand it, we can take a broader perspective.

The sun is the conductor of the solar system symphony. Its gravity dictates the movements of everything that orbits it: Earth as well as the other planets, Vesta, Ceres, and myriad smaller objects, including asteroids and Dawn. (Actually, the gravity of every single body affects how all of the others move, but with more than 99 percent of the entire solar system’s mass concentrated in the gargantuan sun, it dominates the gravitational landscape.)

Whether it is for a planet or Dawn orbiting the sun, a spacecraft or moon orbiting a planet, the sun or other stars orbiting the Milky Way (the Milky Way galaxy, that is, not your correspondent’s cat Milky Way), or the Milky Way galaxy orbiting the Virgo supercluster of galaxies (home to an appreciable fraction of our readership), any orbit is the perfect balance between the inward tug of gravity and the inexorable tendency of objects to travel in a straight line. If you attach a weight to a string and swing it around in a circle, the force you use to pull on the string mimics the gravitational force the sun exerts on the bodies that orbit it. The effort you expend in keeping the weight circling serves constantly to redirect its course, forcing it to curve; if you release the string, the weight’s natural motion would take it away in a straight line (we are ignoring here the effect of Earth’s gravity on the weight).

The force of gravity dwindles as the distance increases, so the sun pulls harder on a nearby body than on a farther one. Therefore, to remain in orbit, to balance the relentless gravitational lure, the closer object must travel at higher speed, resisting the stronger attraction. The same effect applies at Earth. Satellites that orbit very close (including, for example, the International Space Station, 250 miles, or 400 kilometers, above the surface) must streak around the planet at about 17,000 mph (7.6 kilometers per second) to avoid being drawn down. The moon, orbiting almost a thousand times farther above, needs only to travel at less than 2300 mph (about 1.0 kilometers per second) to balance Earth’s weaker hold at its remote location.

For that reason, Mercury zips around the sun faster than any of the other planets. Mars travels more slowly than Earth, and the still more distant residents of the asteroid belt, whether natural (all of them but one) or a product of human ingenuity (one: Dawn), proceed at an even more leisurely pace. As Earth makes its relatively rapid annual trip around the sun, the distance to the spacecraft that left it behind in 2007 alternately shrinks and grows.

We can visualize this with one of the popular models of clocks available in the Dawn gift shop on your planet, in which the hour hand is longer than the minute hand. Imagine the sun as being at the center of the clock. The tip of the short minute hand represents Earth, and the end of the hour hand represents Dawn. Some of the time (such as between noon and shortly after 12:30), the distance between the ends of the hands increases. Then the situation reverses as the faster minute hand begins moving closer and closer to the hour hand as the time approaches about 1:05.

The Dawn spacecraft's trajectory
This graphic shows the Dawn spacecraft’s interplanetary trajectory from launch through its arrival at Ceres next year. The positions of the spacecraft and Earth are shown on April 10, 2014, when their independent orbits bring them relatively close together. Image credit: NASA/JPL-Caltech

› Larger image

Earth and Dawn are exhibiting the same repetitive behavior. Of course, their relative motion is more complicated than that of the clock hands, because Dawn’s ion thrusting is constantly changing its solar orbit (and so the distance and speed at which it loops around the sun), but the principle is the same. They have been drawing closer since August 2013. Earth, coming from behind, is now about to pass Dawn and move ahead. The stalwart probe will not even take note however, as its sights remain firmly set on an unexplored alien world.

On April 10, the separation will be 1.56 AU (1.56 times the average distance between Earth and the sun, which means 145 million miles, or 233 million kilometers), an almost inconceivably large distance (well in excess of half a million times farther than the International Space Station, which orbits Earth, not the sun) but less than it has been since September 2011. (The skeptical reader may verify this by reviewing the concluding paragraph of each log in the intervening months.) Enjoy the upcoming propinquity while you can! As the ship sails outward from the sun toward Ceres, it will never again be this close to its planet of origin. The next time Earth, taking an inside track, overtakes it, in July 2015 (by which time Dawn will be orbiting Ceres), they will only come within 1.94 AU (180 million miles, or 290 million kilometers) of each other.

By the way, Vesta, the endlessly fascinating protoplanet Dawn unveiled in 2011-2012, will be at its smallest separation from Earth of 1.23 AU (114 million miles, or 183 million km) on April 18. Ceres, still awaiting a visitor from Earth, despite having first been glimpsed from there in 1801, will attain its minimum distance on April 15, when it will be 1.64 AU (153 million miles, or 246 million km) away. It should not be a surprise that Dawn’s distance is intermediate; it is between them as it journeys from one to the other.

Finder chart showing the locations of Vesta and Ceres
This finder chart can help you locate Vesta and Ceres (and even Dawn, although it is too small to see) in the constellation Virgo. Click it for a larger version. Image credit: Sky & Telescope Magazine
› Larger image

Not only is each one nearly at its shortest geocentric range, but from Earth’s point of view, they all appear to be near each other in the constellation Virgo. In fact, they also look close to Mars, so you can locate these exotic worlds (and even the undetectably small spacecraft) in the evening sky by using the salient red planet as a signpost. In July, the coincidental celestial alignment will make Vesta and Ceres appear to be separated by only one third the diameter of the full Moon, although these behemoths of the asteroid belt will be 0.57 AU (52 million miles, or 85 million kilometers) from each other.

We mentioned above that by constantly modifying its orbit under the persistent pressure of its ion engine, Dawn complicates the simple clock-like behavior of its motion relative to Earth. On Halloween 2012, we were treated to the startling fact that to rendezvous with Ceres, at a greater distance from the sun, Dawn had to come in toward the sun for a portion of its journey; quite a trick! In that memorable log (which is here, for those readers who didn’t find every detail to be so memorable), we observed that it would not be until May 2014 that Dawn would be as far from the sun as it was on Nov. 1, 2012. Sure enough, having faithfully performed all of the complex and intricate choreography since then, it will fly to more than 2.57 AU from the solar system’s star in May, and it will continue heading outward.

With the sun behind it and without regard to where Earth or most other residents of the solar system are in their orbits, Dawn rises to ever greater heights on its extraordinary expedition. Distant though it is, the celestial ambassador is propelled by the burning passion for knowledge, the powerful yearning to reach beyond the horizon, and the noble spirit of adventure of the inhabitants of faraway Earth. The journey ahead presents many unknowns, promising both great challenges and great rewards. That, after all, is the reason for undertaking it, for such voyages enrich the lives of all who share in the grand quest to understand more about the cosmos and our humble place in it.

Dawn is 11 million miles (18 million kilometers) from Ceres. It is also 1.57 AU (146 million miles, or 235 million kilometers) from Earth, or 625 times as far as the moon and 1.57 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 26 minutes to make the round trip.

› Read more from Marc Rayman’s Dawn Journal


A Preview of Upcoming Attractions: Dawn Meets Ceres

Friday, February 28th, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at the protoplanet Ceres
This artist’s concept of NASA’s Dawn spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. Image credit: NASA/JPL-Caltech
› Larger image

Dear Ardawnt Readers,

Continuing its daring mission to explore some of the last uncharted worlds in the inner solar system, Dawn remains on course and on schedule for its rendezvous with dwarf planet Ceres next year. Silently and patiently streaking through the main asteroid belt between Mars and Jupiter, the ardent adventurer is gradually reshaping its orbit around the Sun with its uniquely efficient ion propulsion system. Vesta, the giant protoplanet it unveiled during its spectacular expedition there in 2011-2012, grows ever more distant.

In December, and January, we saw Dawn’s plans for the “approach phase” to Ceres and how it will slip gracefully into orbit under the gentle control of its ion engine. Entering orbit, gratifying and historic though it will be, is only a means to an end. The reason for orbiting its destinations is to have all the time needed to use its suite of sophisticated sensors to scrutinize these alien worlds.

Illustration of Dawn's approach phase and RC3 orbit
Following its gravitational capture by Ceres during the approach phase, Dawn will continue to use its ion propulsion system to spiral to the RC3 orbit at an altitude of 8,400 miles (13,500 kilometers). Image credit: NASA/JPL-Caltech
› Larger image

As at Vesta, Dawn will take advantage of the extraordinary capability of its ion propulsion system to maneuver extensively in orbit at Ceres. During the course of its long mission there, it will fly to four successively lower orbital altitudes, each chosen to optimize certain investigations. (The probe occupied six different orbits at Vesta, where two of them followed the lowest altitude. As the spacecraft will not leave Ceres, there is no value in ascending from its fourth and lowest orbit.) All of the plans for exploring Ceres have been developed to discover as much as possible about this mysterious dwarf planet while husbanding the precious hydrazine propellant, ensuring that Dawn will complete its ambitious mission there regardless of the health of its reaction wheels.

All of its orbits at Ceres will be circular and polar, meaning the spacecraft will pass over the north pole and the south pole, so all latitudes will come within view. Thanks to Ceres’s own rotation, all longitudes will be presented to the orbiting observer. To visualize this, think of (or even look at) a common globe of Earth. A ring encircling it represents Dawn’s orbital path. If the ring is only over the equator, the spacecraft cannot attain good views of the high northern and southern latitudes. If, instead, the ring goes over both poles, then the combined motion of the globe spinning on its axis and the craft moving along the ring provides an opportunity for complete coverage.

Dawn will orbit in the same direction it did at Vesta, traveling from north to south over the side illuminated by the distant Sun. After flying over the south pole, it will head north, the surface directly beneath it in the dark of night. When it travels over the north pole, the terrain below will come into sunlight and the ship will sail south again.

Dawn’s first orbital phase is distinguished not only by providing the first opportunity to conduct intensive observations of Ceres but also by having the least appealing name of any of the Ceres phases. It is known as RC3, or the third “rotation characterization” of the Ceres mission. (RC1 and RC2 will occur during the approach phase, as described in December.)

During RC3 in April 2015, Dawn will have its first opportunity for a global characterization of its new residence in the asteroid belt. It will take pictures and record visible and infrared spectra of the surface, which will help scientists determine its composition. In addition to learning about the appearance and makeup of Ceres, these observations will allow scientists to establish exactly where Ceres’s pole points. The axis Earth rotates around, for example, happens to point very near a star that has been correspondingly named Polaris, or the North Star. [Note to editors of local editions: You may change the preceding sentence to describe wherever the axis of your planet points.] We know only roughly where Ceres’s pole is from our telescopic studies, but Dawn’s measurements in RC3 will yield a much more accurate result. Also, as the spacecraft circles in Ceres’s gravitational hold, navigators will measure the strength of the gravitational pull and hence its overall mass.

RC3 will be at an orbital altitude of about 8,400 miles (13,500 kilometers). From there, the dwarf planet will appear eight times larger than the moon as viewed from Earth, or about the size of a soccer ball seen from 10 feet (3.1 meters). At that distance, Dawn will be able to capture the entire disk of Ceres in its pictures. The explorer’s camera, designed for mapping unfamiliar extraterrestrial landscapes from orbit, will see details more than 20 times finer than we have now from the Hubble Space Telescope.

Although all instruments will be operated in RC3, the gamma-ray and neutron detector (GRaND) will not be able to detect the faint nuclear emissions from Ceres when it is this far away. Rather, it will measure cosmic radiation. In August we will learn more about how GRaND will measure Ceres’s atomic composition when it is closer.

It will take about 15 days to complete a single orbital revolution at this altitude. Meanwhile, Ceres turns on its axis in just over nine hours (more than two and a half times faster than Earth). Dawn’s leisurely pace compared to the spinning world beneath it presents a very convenient way to map it. It is almost as if the probe hovers in place, progressing only through a short arc of its orbit as Ceres pirouettes helpfully before it.

When Dawn is on the lit side of Ceres over a latitude of about 43 degrees north, it will point its scientific instruments at the unfamiliar, exotic surface. As Ceres completes one full rotation, the robot will fill its data buffers with as much as they can hold, storing images and spectra. By then, most of the northern hemisphere will have presented itself, and Dawn will have traveled to about 34 degrees north latitude. The spacecraft will then aim its main antenna to Earth and beam its prized findings back for all those who long to know more about the mysteries of the solar system. When Dawn is between 3 degrees north and 6 degrees south latitude, it will perform the same routine, acquiring more photos and spectra as Ceres turns to reveal its equatorial regions. To gain a thorough view of the southern latitudes, it will follow the same strategy as it orbits from 34 degrees south to 43 degrees south.

When Dawn goes over to the dark side, it will still have important measurements to make (as long as Darth Vader does not interfere). While the surface immediately beneath it will be in darkness, part of the limb will be illuminated, displaying a lovely crescent against the blackness of space. Both in the southern hemisphere and in the northern, the spacecraft will collect more pictures and spectra from this unique perspective. Dawn’s orbital dance has been carefully choreographed to ensure the sensitive instruments are not pointed too close to the Sun.

› Continue reading Marc Rayman’s February 2014 Dawn Journal


It’s All About Grace Under Pressure for Dawn’s Drop Into Orbit

Friday, January 31st, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at the dwarf planet Ceres
Artist’s concept of NASA’s Dawn spacecraft thrusting with its ion propulsion system as it approaches the dwarf planet Ceres. Image credit: NASA/JPL-Caltech

Dear Rendawnvous,

Dawn is continuing its trek through the main asteroid belt between Mars and Jupiter. Leaving behind a blue-green wake of xenon from its ion propulsion system, its sights are set on dwarf planet Ceres ahead. The journey has been long, but the veteran space traveler (and its support team on distant Earth) is making good progress for its rendezvous early next year.

Last month, we had a preview of many of the activities the probe will execute during the three months that culminate in settling into the first observational orbit at Ceres in April 2015. At that orbit, about 8,400 miles (13,500 kilometers) above the alien landscapes of rock and ice, Dawn will begin its intensive investigations. Nevertheless, even during the “approach phase,” it will often observe Ceres with its camera and one of its spectrometers to gain a better fix on its trajectory and to perform some preliminary characterizations of the mysterious world prior to initiating its in-depth studies. The discussion in December did not cover the principal activity, however, which is one very familiar not only to the spacecraft but also to readers of these logs. The majority of the time in the approach phase will be devoted to continuing the ion-powered flight. We described this before Vesta, but for those few readers who don’t have perfect recall (we know who you are), let’s take another look at how this remarkable technology is used to deliver the adventurer to the desired orbit around Ceres.

Thrusting is not necessary for a spacecraft to remain in orbit, just as the moon remains in orbit around Earth and Earth and other planets remain in orbit around the sun without the benefit of propulsion. All but a very few spacecraft spend most of their time in space coasting, following the same orbit over and over unless redirected by a gravitational encounter with another body. In contrast, with its extraordinarily efficient ion propulsion system, Dawn’s near-continuous thrusting gradually changes its orbit. Thrusting since December 2007 has propelled Dawn from the orbit in which the Delta rocket deposited it after launch to orbits of still greater distance from the sun. The flight profile was carefully designed to send the craft by Mars in February 2009, so our celestial explorer could appropriate some of the planet’s orbital energy for the journey to the more distant asteroid belt, of which it is now a permanent resident. In exchange for Mars raising Dawn’s heliocentric orbit, Dawn lowered Mars’s orbit, ensuring the solar system’s energy account remained balanced.

While spacecraft have flown past a few asteroids in the main belt (although none as large as the gargantuan Vesta or Ceres, the two most massive objects in the belt), no prior mission has ever attempted to orbit one, much less two. For that matter, this is the first mission ever undertaken to orbit any two extraterrestrial destinations. Dawn’s exclusive assignment would be quite impossible without its uniquely capable ion propulsion system. But with its light touch on the accelerator, taking nearly four years to travel from Earth past Mars to Vesta, and more than two and a half years from Vesta to Ceres, how will it enter orbit around Ceres? As we review this topic in preparation for Ceres, bear in mind that this is more than just a cool concept or neat notion. This is real. The remarkable adventurer actually accomplished the extraordinary feats at Vesta of getting into and out of orbit using the delicate thrust of its ion engines.

Whether conventional spacecraft propulsion or ion propulsion is employed, entering orbit requires accompanying the destination on its own orbit around the sun. This intriguing challenge was addressed in part in February 2007. In February 2013, we considered another aspect of what is involved in climbing the solar system hill, with the sun at the bottom, Earth partway up, and the asteroid belt even higher. We saw that Dawn needs to ascend that hill, but it is not sufficient simply to reach the elevation of each target nor even to travel at the same speed as each target; the explorer also needs to travel in the same direction. Probes that leave Earth to orbit other solar system bodies traverse outward from (or inward toward) the sun, but then need to turn in order to move along with the body they will orbit, and that is difficult.

Those of you who have traveled around the solar system before are familiar with the routine of dropping into orbit. The spacecraft approaches its destination at very high velocity and fires its powerful engine for some minutes or perhaps even about an hour, by the end of which it is traveling slowly enough that the planet’s gravity can hold it in orbit and carry it around the sun. These exciting events may range from around 1,300 to 3,400 mph (0.6 to 1.5 kilometers per second). With ten thousand times less thrust than a typical propulsion system on an interplanetary spacecraft, Dawn could never accomplish such a rapid maneuver. As it turns out, however, it doesn’t have to.

Dawn’s method of getting into orbit is quite different, and the key is expressed in an attribute of ion propulsion that has been referred to 63 times (trust or verify; it’s your choice) before in these logs: it is gentle. (This example shows just how gentle the acceleration is.) With the gradual trajectory modifications inherent in ion propulsion, sharp changes in direction and speed are replaced by smooth, gentle curves. The thrust profiles for Dawn’s long interplanetary flights are devoted to the gradual reshaping of its orbit around the sun so that by the time it is in the vicinity of its target, its orbit is nearly the same as that of the target. Rather than hurtling toward Vesta or Ceres, Dawn approaches with grace and elegance. Only a small trajectory adjustment is needed to let its new partner’s gravity capture it, so even that gentle ion thrust will be quite sufficient to let the craft slip into orbit. With only a nudge, it transitions from its large, slow spiral away from the sun to an inward spiral centered around its new gravitational master.

illustration of Dawn's orbit
This graphic shows the planned trek of NASA’s Dawn spacecraft from its launch in 2007 through its arrival at the dwarf planet Ceres in early 2015. Note how Dawn spirals outward to Vesta and then still more to Ceres. Image credit: NASA/JPL-Caltech

To get into orbit, a spacecraft has to match speed, direction and location with its target. A mission with conventional propulsion first gets to the location and then, using the planet’s gravity and its own fuel-guzzling propulsion system, very rapidly achieves the required speed and direction. By spiraling outward from the sun, first to the orbit of Vesta and now to Ceres, Dawn works on its speed, direction and location all at the same time, so they all gradually reach the needed values at just the right time.

To illustrate this facet of the difference between how the different systems are applied to arrive in orbit, let’s imagine you want to drive your car next to another traveling west at 60 mph (100 kilometers per hour). The analogy with the conventional technology would be similar to speeding north toward an intersection where you know the other car will be. You arrive there at the same time and then execute a screeching, whiplash-inducing left turn at the last moment using the brakes, steering wheel, accelerator and adrenaline. When you drive an ion propelled car (with 10 times higher fuel efficiency), you take an entirely different path from the start, one more like a long, curving entrance ramp to a highway. As you enter the ramp, you slowly (perhaps even gently) build speed. You approach the highway gradually, and by the time you have reached the far end of the ramp, your car is traveling at the same speed and in the same direction as the other car. Of course, to ensure you are there when the other car is, the timing is very different from the first method, but the sophisticated techniques of orbital navigation are up to the task.

› Continue reading Marc Rayman’s January 2014 Dawn Journal


NASA’s Dawn Plans for Planetary Shores Ahead

Tuesday, December 31st, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

NASA Dawn spacecraft between its targets, Vesta and Ceres
Artist’s concept of NASA’s Dawn spacecraft between the giant asteroid Vesta and the dwarf planet Ceres. Image credit: NASA/JPL-Caltech

Dear Clairvoydawnts,

Now more than halfway through its journey from protoplanet Vesta to dwarf planet Ceres, Dawn is continuing to use its advanced ion propulsion system to reshape its orbit around the sun. Now that the ship is closer to the uncharted shores ahead than the lands it unveiled astern, we will begin looking at the plans for exploring another alien world. In seven logs from now through August, we will discuss how the veteran adventurer will accomplish its exciting mission at Ceres. By the time it arrives early in 2015 at the largest object between Mars and Jupiter, readers will be ready to share not only in the drama of discovery but also in the thrill of an ambitious undertaking far, far from Earth.

Mission planners separate this deep-space expedition into phases. Following the “launch phase” was the 80-day “checkout phase”. The “interplanetary cruise phase” is the longest. It began on December 17, 2007, and continued to the “Vesta phase,” which extended from May 3, 2011, to Sept. 4, 2012. We are back in the interplanetary cruise phase again and will be until the “Ceres phase” begins in 2015. (Other phases may occur simultaneously with those phases, such as the “oh man, this is so cool phase,” the “we should devise a clever name for this phase phase,” and the “lunch phase.”) Because the tasks at Vesta and Ceres are so complex and diverse, they are further divided into sub-phases. The phases at Ceres will be very similar to those at Vesta, even though the two bodies are entirely different.

In this log, we will describe the Ceres “approach phase.” The objectives of approach are to get the explorer into orbit and to attain a preliminary look at the mysterious orb, both to satisfy our eagerness for a glimpse of a new and exotic world and to obtain data that will be helpful in refining details of the subsequent in-depth investigations. The phase will start in January 2015 when Dawn is about 400,000 miles (640,000 kilometers) from Ceres. It will conclude in April when the spacecraft has completed the ion thrusting necessary to maneuver into the first orbit from which it will conduct intensive observations, at an altitude of about 8,400 miles (13,500 kilometers). For a reason to be revealed below, that orbit is known by the catchy cognomen RC3.

(Previews for the Vesta approach phase were presented in March 2010 and May 2011, and the accounts of its actual execution are in logs from June, July, and August 2011. Future space historians should note that the differing phase boundaries at Vesta are no more than a matter of semantics. At Vesta, RC3 was described as being part of the approach phase. For Ceres, RC3 is its own distinct phase. The reasons for the difference in terminology are not only unimportant, they aren’t even interesting.)

The tremendous maneuverability provided by Dawn’s uniquely capable ion propulsion system means that the exact dates for events in the approach phase likely will change between now and then. So for those of you in 2015 following a link back to this log to see what the approach plan has been, we offer both the reminder that the estimated dates here might shift by a week or so and a welcome as you visit us here in the past. We look forward to meeting you (or even being you) when we arrive in the future.

Most of the approach phase will be devoted to ion thrusting, making the final adjustments to Dawn’s orbit around the sun so that Ceres’s gravity will gently take hold of the emissary from distant Earth. Next month we will explain more about the unusual nature of the gradual entry into orbit, which will occur on about March 25, 2015.

Starting in early February 2015, Dawn will suspend thrusting occasionally to point its camera at Ceres. The first time will be on Feb. 2, when they are 260,000 miles (420,000 kilometers) apart. To the camera’s eye, designed principally for mapping from a close orbit and not for long-range observations, Ceres will appear quite small, only about 24 pixels across. But these pictures of a fuzzy little patch will be invaluable for our celestial navigators. Such “optical navigation” images will show the location of Ceres with respect to background stars, thereby helping to pin down where it and the approaching robot are relative to each other. This provides a powerful enhancement to the navigation, which generally relies on radio signals exchanged between Dawn and Earth. Each of the 10 times Dawn observes Ceres during the approach phase will help navigators refine the probe’s course, so they can update the ion thrust profile to pilot the ship smoothly to its intended orbit.

Whenever the spacecraft stops to acquire images with the camera, it also will train the visible and infrared mapping spectrometer on Ceres. These early measurements will be helpful for finalizing the instrument parameters to be used for the extensive observations at closer range in subsequent mission phases.

Dawn obtained images more often during the Vesta approach phase than it will on approach to Ceres, and the reason is simple. It has lost two of its four reaction wheels, devices used to help turn or stabilize the craft in the zero-gravity, frictionless conditions of spaceflight. (In full disclosure, the units aren’t actually lost. We know precisely where they are. But given that they stopped functioning, they might as well be elsewhere in the universe; they don’t do Dawn any good.) Dawn’s hominin colleagues at JPL, along with excellent support from Orbital Sciences Corporation, have applied their remarkable creativity, tenacity, and technical acumen to devise a plan that should allow all the original objectives of exploring Ceres to be met regardless of the health of the wheels. One of the many methods that contributed to this surprising resilience was a substantial reduction in the number of turns during all remaining phases of the mission, thus conserving the precious hydrazine propellant used by the small jets of the reaction control system.

When Dawn next peers at Ceres, nine days after the first time, it will be around 180,000 miles (290,000 kilometers) away, and the pictures will be marginally better than the sharpest views ever captured by the Hubble Space Telescope. By the third optical navigation session, on Feb. 21, Ceres will show noticeably more detail.

At the end of February, Dawn will take images and spectra throughout a complete Ceres rotation of just over nine hours, or one Cerean day. During that period, while about 100,000 miles (160,000 kilometers) distant, Dawn’s position will not change significantly, so it will be almost as if the spacecraft hovers in place as the dwarf planet pirouettes beneath its watchful eye. Dawn will see most of the surface with a resolution twice as good as what has been achieved with Hubble. (At that point in the curving approach trajectory, the probe will be south of Ceres’s equator, so it will not be able to see the high northern latitudes.) This first “rotation characterization,” or RC1, not only provides the first (near-complete) look at the surface, but it may also suggest to insightful readers what will occur during the RC3 orbit phase.

There will be six more imaging sessions before the end of the approach phase, with Ceres growing larger in the camera’s view each time. When the second complete rotation characterization, RC2, is conducted on March 16, the resolution will be four times better than Hubble’s pictures. The last photos, to be collected on March 24, will reveal features seven times smaller than could be discerned with the powerful space observatory.

The approach imaging sessions will be used to accomplish even more than navigating, providing initial characterizations of the mysterious world, and whetting our appetites for more. Six of the opportunities also will include searches for moons of Ceres. Astronomers have not found moons of this dwarf planet in previous attempts, but Dawn’s unique vantage point would allow it to discover smaller ones than would have been detectable in previous attempts.

When the approach phase ends, Dawn will be circling its new home, held in orbit by the massive body’s gravitational grip and ready to begin more detailed studies. By then, however, the pictures and other data it will have returned will already have taught Earthlings a great deal about that enigmatic place. Ceres has been observed from Earth for more than two centuries, having first been spotted on January 1, 1801, but it has never appeared as much more than an indistinct blob amidst the stars. Soon a probe dispatched by the insatiably curious creatures on that faraway planet will take up residence there to uncover some of the secrets it has held since the dawn of the solar system. We don’t have long to wait!

Dawn is 20 million miles (32 million kilometers) from Vesta and 19 million miles (31 million kilometers) from Ceres. It is also 2.42 AU (225 million miles, or 362 million kilometers) from Earth, or 1,015 times as far as the moon and 2.46 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 40 minutes to make the round trip.

› Read more entries from Marc Rayman’s Dawn Journal