Posts Tagged ‘engineer’

Smooth Sailing: Dawn Spacecraft Passes Endurance Test

Monday, June 3rd, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Confidawnts,

Traveling from one alien world to another, Dawn is reliably powering its way through the main asteroid belt with its ion propulsion system. Vesta, the fascinating and complex protoplanet it explored in 2011 and 2012, falls farther and farther behind as the spacecraft gently and patiently reshapes its orbit around the sun, aiming for a 2015 rendezvous with dwarf planet Ceres.

The stalwart adventurer has recently completed its longest uninterrupted ion thrust period yet. As part of the campaign to conserve precious hydrazine propellant, Dawn now suspends thrusting once every four weeks to point its main antenna to Earth. (In contrast, spacecraft with conventional chemical propulsion spend the vast majority of time coasting.) Because of details of the mission operations schedule and the schedule for NASA’s Deep Space Network, the thrust durations can vary by a few days. As a result, the spacecraft spent 31.2 days thrusting without a hiatus. This exceeds Deep Space 1’s longest sustained powered flight of 29.2 days. While there currently are no plans to thrust for longer times, the unique craft certainly is capable of doing so. The principal limitation is how much data it can store on the performance of all subsystems (pressures, temperatures, currents, voltages, valve positions, etc.) for subsequent reporting to its terrestrial colleagues.

Thanks to the ship’s dependability, the operations team has been able to devote much of its energies recently to developing and refining the complex plans for the exploration of Ceres. You might be among the privileged readers who will get a preview when we begin describing the plans later this year.

Controllers also have devised some special activities for the spacecraft to perform in the near future, accounts of which are predicted to be in the next two logs.

In addition, team members have had time to maintain their skills for when the spacecraft needs more attention. Earlier this month, they conducted an operational readiness test (ORT). One diabolical engineer carefully configured the Dawn spacecraft simulator at JPL to behave as if a pebble one-half of a centimeter (one-fifth of an inch) in diameter shooting through the asteroid belt collided with the probe at well over twice the velocity of a high-performance rifle bullet.

When the explorer entered this region of space, we discussed that it was not as risky as residents of other parts of the solar system might assume. Dawn does not require Han Solo’s piloting skills to avoid most of the dangerous rocky debris.

The robot could tolerate such a wound, but it would require some help from operators to resume normal operations. This exercise presented the spacecraft team with an opportunity to spend several days working through the diagnosis and performing the steps necessary to continue the mission (using some of the ship’s backup systems). While the specific problem is extremely unlikely to occur, the ORT provided valuable training for new members of the project and served to keep others sharp.

One more benefit of the smooth operations is the time that it enables your correspondent to write his third shortest log ever. (Feel free to do the implied research.) Frequent readers can only hope he strives to achieve such a gratifying feat again!

Dawn is 13 million kilometers (7.9 million miles) from Vesta and 54 million kilometers (34 million miles) from Ceres. It is also 3.25 AU (486 million kilometers or 302 million miles) from Earth, or 1,275 times as far as the moon and 3.20 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 54 minutes to make the round trip.

› Read previous Dawn Journals by Marc Rayman


While Dawn Keeps Cruising, Engineers Carry On

Friday, March 29th, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Indawnstrious Readers,

In the depths of the main asteroid belt between Mars and Jupiter, far from Earth, far even from any human-made object, Dawn remains in silent pursuit of dwarf planet Ceres. It has been more than six months since it slipped gracefully away from the giant protoplanet Vesta. The spacecraft has spent 95 percent of the time since then gently thrusting with its ion propulsion system, using that blue-green beam of high velocity xenon ions to propel itself from one alien world to another.

The ship set sail from Earth more than two thousand days ago, and its voyage on the celestial seas has been wonderfully rewarding. Its extensive exploration of Vesta introduced humankind to a complex and fascinating place that had only been tantalizingly glimpsed from afar with telescopes beginning with its discovery 206 years ago today. Thanks to the extraordinary capability of ion propulsion, Dawn was able to spend 14 months orbiting Vesta, observing dramatic landscapes and exotic features and collecting a wealth of measurements that scientists will continue to analyze for many years.

When it was operating close to Vesta, the spacecraft was in frequent contact with Earth. It took Dawn quite a bit of time to beam the 31,000 photos and other precious data to mission control. In addition, engineers needed to send a great many instructions to the distant adventurer to ensure it remained healthy and productive in carrying out its demanding work in the unforgiving depths of space.

Dawn is now more than 20 times farther from Vesta than the moon is from Earth. Alone again and on its long trek to Ceres, it is not necessary for the ship to be in radio contact as often. As we saw in November, the spacecraft now stops ion thrusting only once every four weeks to point its main antenna to Earth. This schedule conserves the invaluable hydrazine propellant the explorer will need at Ceres. But communicating less frequently does not mean the mission operations team is any less busy. Indeed, as we have explained before, “quiet cruise” consists of a considerable amount of activity.

Each time Dawn communicates with Earth, controllers transmit a second-by-second schedule for the subsequent four weeks. They also load a detailed flight profile with the ion throttle levels and directions for that period. It takes about three weeks to calculate and formulate these plans and to analyze, check, double check, and triple check them to ensure they are flawless before they can be radioed to Dawn.

In addition to all the usual information Dawn needs to keep flying smoothly, operators occasionally include some special instructions. As one example, over the last few months, they have gradually lowered the temperatures of some components slightly in order to reduce heater power. When Dawn stretched out its solar array wings shortly after separating from the Delta rocket on September 27, 2007, its nearly 65-foot wingspan was the longest of any NASA interplanetary probe. The large area of solar cells is needed to collect enough light from the distant sun to power the ion propulsion system and all other spacecraft systems. Devoting a little less power to heaters allows more power to be applied to ionizing and accelerating xenon, yielding greater thrust. With two and a half years of powered flight required to travel from Vesta to Ceres, even a little extra power can make a worthwhile difference to a mission that craves power.

Most temperature adjustments are only two degrees Celsius (3.8 degrees Fahrenheit) at a time, but even that requires careful analysis and investigation, because lowering the temperature of one component may affect another. Xenon and hydrazine propellants need to be maintained in certain ranges, and the lines they flow through follow complicated paths around the spacecraft, so the temperatures all along the way matter. Most of the hardware onboard, from valves and switches to electronics to structural mounts for sensitively aligned units, needs to be thermally regulated to keep Dawn shipshape.

It can take hours for a component to cool down and stabilize at a new setting, and sometimes the change won’t even occur until the spacecraft has turned away to resume thrusting, when the faint warmth of the sun and the deep cold of black space affect different parts of the complex robot. Then it will be another four weeks until engineers will receive a comprehensive report on all the temperatures, so they need to be cautious with each change.

› Continue reading Marc Rayman’s Dawn Journal