Posts Tagged ‘mission’

A Preview of Upcoming Attractions: Dawn Meets Ceres

Friday, February 28th, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at the protoplanet Ceres
This artist’s concept of NASA’s Dawn spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. Image credit: NASA/JPL-Caltech
› Larger image

Dear Ardawnt Readers,

Continuing its daring mission to explore some of the last uncharted worlds in the inner solar system, Dawn remains on course and on schedule for its rendezvous with dwarf planet Ceres next year. Silently and patiently streaking through the main asteroid belt between Mars and Jupiter, the ardent adventurer is gradually reshaping its orbit around the Sun with its uniquely efficient ion propulsion system. Vesta, the giant protoplanet it unveiled during its spectacular expedition there in 2011-2012, grows ever more distant.

In December, and January, we saw Dawn’s plans for the “approach phase” to Ceres and how it will slip gracefully into orbit under the gentle control of its ion engine. Entering orbit, gratifying and historic though it will be, is only a means to an end. The reason for orbiting its destinations is to have all the time needed to use its suite of sophisticated sensors to scrutinize these alien worlds.

Illustration of Dawn's approach phase and RC3 orbit
Following its gravitational capture by Ceres during the approach phase, Dawn will continue to use its ion propulsion system to spiral to the RC3 orbit at an altitude of 8,400 miles (13,500 kilometers). Image credit: NASA/JPL-Caltech
› Larger image

As at Vesta, Dawn will take advantage of the extraordinary capability of its ion propulsion system to maneuver extensively in orbit at Ceres. During the course of its long mission there, it will fly to four successively lower orbital altitudes, each chosen to optimize certain investigations. (The probe occupied six different orbits at Vesta, where two of them followed the lowest altitude. As the spacecraft will not leave Ceres, there is no value in ascending from its fourth and lowest orbit.) All of the plans for exploring Ceres have been developed to discover as much as possible about this mysterious dwarf planet while husbanding the precious hydrazine propellant, ensuring that Dawn will complete its ambitious mission there regardless of the health of its reaction wheels.

All of its orbits at Ceres will be circular and polar, meaning the spacecraft will pass over the north pole and the south pole, so all latitudes will come within view. Thanks to Ceres’s own rotation, all longitudes will be presented to the orbiting observer. To visualize this, think of (or even look at) a common globe of Earth. A ring encircling it represents Dawn’s orbital path. If the ring is only over the equator, the spacecraft cannot attain good views of the high northern and southern latitudes. If, instead, the ring goes over both poles, then the combined motion of the globe spinning on its axis and the craft moving along the ring provides an opportunity for complete coverage.

Dawn will orbit in the same direction it did at Vesta, traveling from north to south over the side illuminated by the distant Sun. After flying over the south pole, it will head north, the surface directly beneath it in the dark of night. When it travels over the north pole, the terrain below will come into sunlight and the ship will sail south again.

Dawn’s first orbital phase is distinguished not only by providing the first opportunity to conduct intensive observations of Ceres but also by having the least appealing name of any of the Ceres phases. It is known as RC3, or the third “rotation characterization” of the Ceres mission. (RC1 and RC2 will occur during the approach phase, as described in December.)

During RC3 in April 2015, Dawn will have its first opportunity for a global characterization of its new residence in the asteroid belt. It will take pictures and record visible and infrared spectra of the surface, which will help scientists determine its composition. In addition to learning about the appearance and makeup of Ceres, these observations will allow scientists to establish exactly where Ceres’s pole points. The axis Earth rotates around, for example, happens to point very near a star that has been correspondingly named Polaris, or the North Star. [Note to editors of local editions: You may change the preceding sentence to describe wherever the axis of your planet points.] We know only roughly where Ceres’s pole is from our telescopic studies, but Dawn’s measurements in RC3 will yield a much more accurate result. Also, as the spacecraft circles in Ceres’s gravitational hold, navigators will measure the strength of the gravitational pull and hence its overall mass.

RC3 will be at an orbital altitude of about 8,400 miles (13,500 kilometers). From there, the dwarf planet will appear eight times larger than the moon as viewed from Earth, or about the size of a soccer ball seen from 10 feet (3.1 meters). At that distance, Dawn will be able to capture the entire disk of Ceres in its pictures. The explorer’s camera, designed for mapping unfamiliar extraterrestrial landscapes from orbit, will see details more than 20 times finer than we have now from the Hubble Space Telescope.

Although all instruments will be operated in RC3, the gamma-ray and neutron detector (GRaND) will not be able to detect the faint nuclear emissions from Ceres when it is this far away. Rather, it will measure cosmic radiation. In August we will learn more about how GRaND will measure Ceres’s atomic composition when it is closer.

It will take about 15 days to complete a single orbital revolution at this altitude. Meanwhile, Ceres turns on its axis in just over nine hours (more than two and a half times faster than Earth). Dawn’s leisurely pace compared to the spinning world beneath it presents a very convenient way to map it. It is almost as if the probe hovers in place, progressing only through a short arc of its orbit as Ceres pirouettes helpfully before it.

When Dawn is on the lit side of Ceres over a latitude of about 43 degrees north, it will point its scientific instruments at the unfamiliar, exotic surface. As Ceres completes one full rotation, the robot will fill its data buffers with as much as they can hold, storing images and spectra. By then, most of the northern hemisphere will have presented itself, and Dawn will have traveled to about 34 degrees north latitude. The spacecraft will then aim its main antenna to Earth and beam its prized findings back for all those who long to know more about the mysteries of the solar system. When Dawn is between 3 degrees north and 6 degrees south latitude, it will perform the same routine, acquiring more photos and spectra as Ceres turns to reveal its equatorial regions. To gain a thorough view of the southern latitudes, it will follow the same strategy as it orbits from 34 degrees south to 43 degrees south.

When Dawn goes over to the dark side, it will still have important measurements to make (as long as Darth Vader does not interfere). While the surface immediately beneath it will be in darkness, part of the limb will be illuminated, displaying a lovely crescent against the blackness of space. Both in the southern hemisphere and in the northern, the spacecraft will collect more pictures and spectra from this unique perspective. Dawn’s orbital dance has been carefully choreographed to ensure the sensitive instruments are not pointed too close to the Sun.

› Continue reading Marc Rayman’s February 2014 Dawn Journal


Earth and Dawn on Opposite Sides Now

Friday, August 30th, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

The Dawn spacecraft's orbits
In this graphic of Dawn’s interplanetary trajectory, the thin solid lines represent the orbits of Earth, Mars, Vesta and Ceres. After leaving Vesta, Dawn’s orbit temporarily takes it closer to the Sun than Vesta, although in this view they are so close together the difference is not visible because of the thickness of the lines. Dawn will remain in orbit around Ceres at the end of its primary mission. Image credit: NASA/JPL-Caltech

Dear Antecedawnts,

Traveling confidently and alone, Dawn continues to make its way through the silent depths of the main asteroid belt. The only spacecraft ever to have orbited a resident of the vast territory between Mars and Jupiter, Dawn conducted a spectacular exploration of gigantic Vesta, revealing a complex place that resembles the terrestrial planets more than typical asteroids. Now the interplanetary adventurer is on its long journey to the uncharted dwarf planet Ceres, by far the largest of all asteroids (975 kilometers, or more than 600 miles, in equatorial diameter). In 2015, the mysterious world of rock and ice will begin to give up its ancient secrets to the immigrant from distant Earth.

Earth, Vesta, Dawn, and Ceres are following their own separate paths around the sun. The spacecraft is patiently reshaping its orbit, using its uniquely efficient ion propulsion system to accomplish a deep-space expedition that would be impossible with conventional propulsion.

As we have seen in many previous logs (including, for example, here), the higher an object’s orbit, the slower it needs to move in order to balance the gravitational pull, which diminishes with distance. Blistering Mercury orbits the sun faster than Venus, Venus goes faster than Earth, Earth goes faster than Mars, and Mars goes faster than the residents of the asteroid belt and the cold planets of the outer solar system. In the same way, satellites that orbit close to Earth, including the International Space Station, move faster than those at greater altitudes, and the moon travels even more slowly in its very high orbit.

Dawn is now a permanent inhabitant of the main asteroid belt. Therefore, the massive sun, the gravitational master of the solar system, has a weaker grip on it than on Earth. So as Dawn maneuvers from Vesta to Ceres, Earth revolves more rapidly around the sun. This month, their independent motions have taken them to their greatest separation of the year, as they are on opposite sides of the sun. How truly remarkable that humankind can accomplish such a feat!

On August 4, the planet and its robotic ambassador to the cosmos were an extraordinary 3.47 AU (519 million kilometers, or 322 million miles) apart. (To recapture the feeling of your position in the universe then, it may be helpful to know that the maximum range was attained at 4:16 a.m. PDT.) From the perspective of terrestrial observers, had they possessed the superhuman (and even supertelescopic) vision needed to descry the tiny ship far beyond the blindingly bright star, Dawn would have appeared to be very close to the sun but not directly behind it. To rendezvous with Vesta and then with Ceres, the spacecraft has tilted the plane of its solar orbit. Some of the time it is north of Earth’s orbital plane, sometimes it is south. August 4 was during the northern segment, so Dawn would have been a little north of the sun.

It’s time to refer to one of those novel clocks available in the Dawn gift shop on your planet (although if you already have such a clock, it probably doesn’t tell you that it’s time — we stand by our policy of full refunds within 24 hours, as measured by our Dawn clocks). With the sun at the center of the clock, Earth’s motion would be like that of a short minute hand. Dawn, both farther from the sun and moving more slowly, would be following the path of a longer hour hand. If we ignore the effect of the ion thrust, which is constantly changing the orbit, and the slight misalignment of the hour hand representing Dawn’s being in a different plane, the conditions on August 4 were like those at 6:00.

As time progresses and Earth continues circling the sun, it will come closer to Dawn until April 2014 (like 12:00). Even then, however, they will be over 1.55 AU (232 million kilometers, or 144 million miles) apart, and they will never be that close again. The spacecraft will continue climbing higher and higher from the sun toward Ceres, so by the time Earth loops around once more, Dawn will be even farther from it. In the meantime, when next the arrangement is like 6:00, in December 2014, the separation will be more than 3.78 AU (565 million kilometers, or 351 million miles), even greater than the remarkable range a few weeks ago.

› Continue reading Marc Rayman’s Dawn Journal


Smooth Sailing: Dawn Spacecraft Passes Endurance Test

Monday, June 3rd, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Confidawnts,

Traveling from one alien world to another, Dawn is reliably powering its way through the main asteroid belt with its ion propulsion system. Vesta, the fascinating and complex protoplanet it explored in 2011 and 2012, falls farther and farther behind as the spacecraft gently and patiently reshapes its orbit around the sun, aiming for a 2015 rendezvous with dwarf planet Ceres.

The stalwart adventurer has recently completed its longest uninterrupted ion thrust period yet. As part of the campaign to conserve precious hydrazine propellant, Dawn now suspends thrusting once every four weeks to point its main antenna to Earth. (In contrast, spacecraft with conventional chemical propulsion spend the vast majority of time coasting.) Because of details of the mission operations schedule and the schedule for NASA’s Deep Space Network, the thrust durations can vary by a few days. As a result, the spacecraft spent 31.2 days thrusting without a hiatus. This exceeds Deep Space 1’s longest sustained powered flight of 29.2 days. While there currently are no plans to thrust for longer times, the unique craft certainly is capable of doing so. The principal limitation is how much data it can store on the performance of all subsystems (pressures, temperatures, currents, voltages, valve positions, etc.) for subsequent reporting to its terrestrial colleagues.

Thanks to the ship’s dependability, the operations team has been able to devote much of its energies recently to developing and refining the complex plans for the exploration of Ceres. You might be among the privileged readers who will get a preview when we begin describing the plans later this year.

Controllers also have devised some special activities for the spacecraft to perform in the near future, accounts of which are predicted to be in the next two logs.

In addition, team members have had time to maintain their skills for when the spacecraft needs more attention. Earlier this month, they conducted an operational readiness test (ORT). One diabolical engineer carefully configured the Dawn spacecraft simulator at JPL to behave as if a pebble one-half of a centimeter (one-fifth of an inch) in diameter shooting through the asteroid belt collided with the probe at well over twice the velocity of a high-performance rifle bullet.

When the explorer entered this region of space, we discussed that it was not as risky as residents of other parts of the solar system might assume. Dawn does not require Han Solo’s piloting skills to avoid most of the dangerous rocky debris.

The robot could tolerate such a wound, but it would require some help from operators to resume normal operations. This exercise presented the spacecraft team with an opportunity to spend several days working through the diagnosis and performing the steps necessary to continue the mission (using some of the ship’s backup systems). While the specific problem is extremely unlikely to occur, the ORT provided valuable training for new members of the project and served to keep others sharp.

One more benefit of the smooth operations is the time that it enables your correspondent to write his third shortest log ever. (Feel free to do the implied research.) Frequent readers can only hope he strives to achieve such a gratifying feat again!

Dawn is 13 million kilometers (7.9 million miles) from Vesta and 54 million kilometers (34 million miles) from Ceres. It is also 3.25 AU (486 million kilometers or 302 million miles) from Earth, or 1,275 times as far as the moon and 3.20 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 54 minutes to make the round trip.

› Read previous Dawn Journals by Marc Rayman


Short Puffs Keep Dawn Chugging Along

Tuesday, December 4th, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at Ceres
Artist’s concept of NASA’s Dawn spacecraft at its next target, the protoplanet Ceres. Image credit: NASA/JPL-Caltech

Dear Dawndroids,

Dawn is continuing to gently and patiently change its orbit around the sun. In September, it left Vesta, a complex and fascinating world it had accompanied for 14 months, and now the bold explorer is traveling to the largest world in the main asteroid belt, dwarf planet Ceres.

Dawn has spent most of its time since leaving Earth powering its way through the solar system atop a column of blue-green xenon ions emitted by its advanced ion propulsion system. Mission controllers have made some changes to Dawn’s operating profile in order to conserve its supply of a conventional rocket propellant known as hydrazine. Firing it through the small jets of the reaction control system helps the ship rotate or maintain its orientation in the zero-gravity of spaceflight. The flight team had already taken some special steps to preserve this precious propellant, and now they have taken further measures. If you remain awake after the description of what the changes are, you can read about the motivation for such frugality.

Dawn’s typical week of interplanetary travel used to include ion thrusting for almost six and two-thirds days. Then it would stop and slowly pirouette to point its main antenna to Earth for about eight hours. That would allow it to send to the giant antennas of NASA’s Deep Space Network a full report on its health from the preceding week, including currents, voltages, temperatures, pressures, instructions it had executed, decisions it had made, and almost everything else save its wonderment at operating in the forbidding depths of space so fantastically far from its planet of origin. Engineers also used these communications sessions to radio updated commands to the craft before it turned once again to fire its ion thruster in the required direction.

Now operators have changed the pace of activities. Every turn consumes hydrazine, as the spacecraft expels a few puffs of propellant through some of its jets to start rotating and through opposing jets to stop. Instead of turning weekly, Dawn has been maintaining thrust for two weeks at a time, and beginning in January it will only turn to Earth once every four weeks. After more than five years of reliable performance, controllers have sufficient confidence in the ship to let it sail longer on its own. They have refined the number and frequency of measurements it records so that even with longer intervals of independence, the spacecraft can store the information engineers deem the most important to monitor.

Although contact is established through the main antenna less often, Dawn uses one of its three auxiliary antennas twice a week. Each of these smaller antennas produces a much broader signal so that even when one cannot be aimed directly at Earth, the Deep Space Network can detect its weak transmission. Only brief messages can be communicated this way, but they are sufficient to confirm that the distant ship remains healthy.

In addition to turning less often, Dawn now turns more slowly. Its standard used to be the same blinding pace at which the minute hand races around a clock (fasten your seat belt!). Engineers cut that in half two years ago but returned to the original value at the beginning of the Vesta approach phase. Now they have lowered it to one quarter of a minute hand’s rate. Dawn is patient, however. There’s no hurry, and the leisurely turns are much more hydrazine-efficient.

With these two changes, the robotic adventurer will arrive at Ceres in 2015 with about half of the 45.6-kilogram (101-pound) hydrazine supply it had when it rocketed away from Cape Canaveral on a lovely September dawn in 2007. Mission planners will be able to make excellent use of it as they guide the probe through its exploration of the giant of the main asteroid belt.

Any limited resource should be consumed responsibly, whether on a planet or on a spaceship. Hydrazine is not the only resource that Dawn’s controllers manage carefully, but let’s recall why this one has grown in importance recently.

› Continue reading Marc Rayman’s Dawn Journal


Dawn Comes Closer to Go Farther

Thursday, November 1st, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at Ceres
Artist’s concept of NASA’s Dawn spacecraft at its next target, the protoplanet Ceres. Image credit: NASA/JPL-Caltech

Dear Indawnspensable Readers,

Dawn is making good progress on the second segment of its cosmic travels. Following more than a year of arduous but sensationally productive and exciting work revealing the fascinating character of the giant protoplanet Vesta, it is now patiently pursuing its next target, the mysterious dwarf planet Ceres, which resides farther from the sun. For the second (and final) time in its interplanetary journey, however, Dawn is about to turn around, going closer to the sun rather than farther away.

In August 2008, we saw in detail how it could be that even as the bold explorer travels outward in the solar system from Earth, past Mars, to Vesta, and then on to Ceres, it could occasionally appear to reverse course temporarily. We present here a shorter explanation for those readers who did not memorize the log explaining this perplexing behavior (you know who you are, and we do as well, but your secret remains safe under the terms of our reader privacy agreement).

Dawn orbits the sun, as do Vesta, Ceres, the other residents of the main asteroid belt, and the planets. All orbits, whether of these objects around the star at the center of our solar system, artificial satellites or the moon in orbit around Earth, or even Dawn when it was in orbit around Vesta, are ellipses (like flattened circles). Earth, for example, orbits the sun at an average distance of 150 million kilometers (93.0 million miles), which astronomers call one astronomical unit (AU). During its year-long revolution, however, our planet comes in to 0.98 AU from the sun and goes out to 1.02 AU. Earthlings manage quite nicely with these small variations. (Note that the seasons are not caused by the changes in distance but instead are a result of the tilt of Earth’s axis and thus the differing angles at which the warming rays of the sun arrive during the year. If the sun’s distance were all that mattered, the northern and southern hemispheres would have the same seasons.) So, orbiting bodies move smoothly between a minimum and a maximum range from their gravitational masters rather than remaining at a constant distance.

When Dawn was in orbit around Vesta, it accompanied that world on its regular journey around the sun. The table last month showing the probe’s progress over the five years of its deep space trek reminds us that Vesta’s path brings it as close to the sun as 2.15 AU and takes it out to 2.57 AU.

If Dawn had remained in orbit around Vesta, it would have continued to follow the same elliptical course as its host in the asteroid belt. The pair would have reached their maximum solar distance next month and then would have fallen back to 2.15 AU in September 2014. While visiting Vesta was extremely gratifying, this explorer’s ambitions are greater. It broke free of Vesta’s grip, its sights set on a new and distant alien destination.

Now the spacecraft is in its own independent orbit around the sun, and the persistent but gentle pressure of its advanced ion propulsion system gradually reshapes that orbit. At any moment, the orbit is an ellipse, and an instant later, it is a slightly different ellipse, courtesy of the thrust. As Dawn departed from Vesta only last month, its orbit is not yet dramatically different, but over the course of the coming years, the effect of the thrusting will be to change the orbit tremendously. To reach Ceres in 2015, the ship will enlarge and tip its elliptical course to match the motion of the dwarf planet around the sun. (Some of the parameters characterizing each object’s orbit are shown here.)

Although the ship’s orbit is growing, it will reach the current high point on Nov. 1. It will then be 2.57 AU from the sun and, just as in 2008 (albeit at a smaller distance), it will begin moving closer, even as it continues to thrust.

If Dawn stopped thrusting on Nov. 1, its elliptical orbit would carry it down to 2.19 AU from the sun in September 2014. That’s a higher orbit than Vesta’s but still well below what it needs to be for the rendezvous with Ceres. Astute readers have already anticipated that the plan is not to stop thrusting but to continue reworking the trajectory, just as a ceramicist gradually achieves a desired shape to create the envisioned artistic result. The ongoing thrusting will raise the low point of the orbit, so if the ship follows the flight plan, it will descend only to 2.45 AU in October 2013 before sailing outward again. By May 2014 it will have risen to the same solar altitude as it is now. All the thrusting in the interim will have altered its course so much, however, that it will not turn around then; rather, it will continue ascending to keep its 2015 appointment with Ceres.

› Continue reading Marc Rayman’s Dawn Journal


Dawn’s Stellar Anniversary

Thursday, September 27th, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Dawnniversaries,

On the fifth anniversary of the beginning of its ambitious interplanetary adventure, Dawn can look back with great satisfaction on its spectacular exploration of the giant protoplanet Vesta and forward with great eagerness to reaching dwarf planet Ceres. Today Earth’s robotic ambassador to the main asteroid belt is in quiet cruise, gradually reshaping its orbit around the sun so it can keep its appointment in 2015 with the mysterious alien world that lies ahead.

This anniversary resembles the first three more than the fourth. Its first years in space were devoted to spiraling away from the sun, ascending the solar system hill so it could gracefully slip into orbit around Vesta in time for its fourth anniversary. One year ago, Dawn was in the behemoth’s gravitational grip and preparing to map its surface in stereo and make other measurements. The subsequent year yielded stunning treasures as Dawn unveiled the wondrous secrets of a world that had only been glimpsed from afar for over two centuries. While at Vesta, it spiraled around the massive orb to position itself for the best possible perspectives. Its final spiral culminated in its departure from Vesta earlier this month. Now for its fifth anniversary, it is spiraling around the sun again, climbing beyond Vesta so that it can reach Ceres.

For those who would like to track the probe’s progress in the same terms used on previous (and, we boldly predict, subsequent) anniversaries, we present here the fifth annual summary, reusing the text from last year with updates where appropriate. Readers who wish to cogitate about the extraordinary nature of this deep-space expedition may find it helpful to compare this material with the logs from its first, second, third, and fourth anniversaries.

In its five years of interplanetary travels, the spacecraft has thrust for a total of 1060 days, or 58 percent of the time (and about 0.000000021 percent of the time since the Big Bang). While for most spacecraft, firing a thruster to change course is a special event, it is Dawn’s wont. All this thrusting has cost the craft only 267 kilograms (587 pounds) of its supply of xenon propellant, which was 425 kilograms (937 pounds) on September 27, 2007.

The fraction of time the ship has spent in powered flight is lower than last year (when it was 68 percent), because Dawn devoted relatively little of the past year to thrusting. Although it did change orbits extensively at Vesta, most of the time it was focused on exactly what it was designed and built to do: scrutinize the ancient world for clues about the dawn of the solar system.

The thrusting so far in the mission has achieved the equivalent of accelerating the probe by 7.14 kilometers per second (16,000 miles per hour). As previous logs have described (see here for one of the more extensive discussions), because of the principles of motion for orbital flight, whether around the sun or any other gravitating body, Dawn is not actually traveling this much faster than when it launched. But the effective change in speed remains a useful measure of the effect of any spacecraft’s propulsive work. Having accomplished slightly more than half of the thrust time planned for its entire mission, Dawn has already far exceeded the velocity change achieved by any other spacecraft under its own power. (For a comparison with probes that enter orbit around Mars, refer to this earlier log.)

Since launch, our readers who have remained on or near Earth have completed five revolutions around the sun, covering about 31.4 AU (4.70 billion kilometers or 2.92 billion miles). Orbiting farther from the sun, and thus moving at a more leisurely pace, Dawn has traveled 23.4 AU (3.50 billion kilometers or 2.18 billion miles). As it climbed away from the sun to match its orbit to that of Vesta, it continued to slow down to Vesta’s speed. Since Dawn’s launch, Vesta has traveled only 20.4 AU (3.05 billion kilometers or 1.90 billion miles) and the even more sedate Ceres has gone 18.9 AU (2.82 billion kilometers or 1.75 billion miles).

› Continue reading Marc Rayman’s Dawn Journal


Dawn’s Split from Asteroid Vesta - Mission Insider Explains

Wednesday, September 5th, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

The dwarf planet Ceres as imaged by the Keck Observatory
NASA’s Dawn spacecraft departed the giant asteroid Vesta on Sept. 04, 2012 PDT to begin its journey to a second destination, the dwarf planet Ceres, which is seen in this image from the Keck Observatory on Mauna Kea, Hawaii. Image credit: NASA/JPL-Caltech, Keck Observatory, C. Dumas

Dear Marvestalous Readers,

An interplanetary spaceship left Earth in 2007. Propelling itself gently and patiently through the solar system with a blue-green beam of xenon ions, it gradually spiraled away from the sun. It sailed past Mars in 2009, its sights set on more distant and exotic destinations. In July 2011, it gracefully and elegantly entered orbit around the second most massive resident of the main asteroid belt, Vesta. It spent more than 13 months there scrutinizing the gigantic protoplanet with all of its sensors and maneuvering to different orbits to optimize its investigations, making myriad marvelous discoveries. After they traveled together around the sun for 685 million kilometers (426 million miles), the ship left orbit in September 2012 and is now headed for dwarf planet Ceres, the largest body between the sun and Neptune not yet visited by a spacecraft. No other probe has ever been capable of the amazing feats Dawn is performing, exploring two of the largest uncharted worlds in the inner solar system.

The population of the main asteroid belt numbers in the millions. Vesta is such a behemoth that Dawn has now single-handedly examined about eight percent of the mass of the entire belt. And by the time it finishes at the colossus Ceres, it will have investigated around 40 percent.

The expedition to Vesta has produced riches beyond everyone’s hopes. With 31,000 photos, 20 million visible and infrared spectra, and thousands of hours of neutron spectra, gamma ray spectra, and gravity measurements, Dawn has revealed to humankind a unique and fascinating member of the solar system family. More akin to Earth and the other terrestrial planets than to typical asteroids, Vesta is not just another chunk of rock. It displays complex geology and even has a dense iron-nickel core, a mantle, and a crust. Its heavily cratered northern hemisphere tells the story of more than 4.5 billion years of battering in the rough and tumble asteroid belt. Its southern hemisphere was wiped clean, resurfaced by an enormous impact at least two billion years ago and an even greater collision one billion years ago. These events excavated the 400-kilometer (250-mile) Veneneia and 500-kilometer (310-mile) Rheasilvia basins. The larger basin has a mountain at the center that towers more than twice the height of Mt. Everest; indeed, it soars higher than all but one of the mountains known in the solar system. The impacts were so forceful, they nearly destroyed Vesta. The fierce shock reverberated through the entire body and left as scars an extraordinary network of vast troughs near the equator, some hundreds of kilometers (miles) long and 15 kilometers (10 miles) wide.

The powerful impacts liberated tremendous amounts of material, flinging rocks far out into space, some of which eventually made it all the way to Earth. It is astonishing that more than one thousand meteorites found here came from Vesta. We have some meteorites from Mars, and we have some meteorites from the moon, but we have far, far more that originated in those impacts at Vesta, so distant in time and space. Vesta, Mars, and the moon are the only celestial bodies identified as the source of specific meteorites.

Scientists will spend years productively poring through Dawn’s fabulous findings and learning what secrets they hold about the dawn of the solar system, and many more people will continue to marvel at the spectacular sights of this alien world. But the emissary from Earth has completed its assignment there and moved on. It has spent most of its time since the previous log using its ion propulsion system to climb higher and higher above Vesta. This departure spiral is the mirror image of the approach spiral the robotic adventurer followed last year. The unique method of entering and leaving orbit is one of the many intriguing characteristics of a mission that uses ion propulsion. Without that advanced technology, this ambitious deep space adventure would be impossible.

As Dawn ascended, Vesta’s gravitational grip grew weaker and weaker. At some point along its spiral, the explorer was far enough and moving fast enough that Vesta could no longer hold it in orbit. As smoothly and tenderly as Vesta had taken Dawn in its embrace last year, it released its erstwhile companion, each to go its own way around the sun. The bond was severed at about 11:26 p.m. PDT yesterday, when they were 17,200 kilometers (10,700 miles) apart, separating at the remarkably leisurely speed of less than 33 meters per second (73 miles per hour). Many of our readers drove their cars that fast today (although we hope it was not in school zones).

Unlike missions that use conventional chemical propulsion, there was no sudden change on the spacecraft and no nail-biting on Earth. If you had been in space watching the action, you probably would have been hungry, cold, and hypoxic, but you would not have noticed anything unusual about the scene. Apart from a possible hint of self-satisfaction, Dawn would have looked just as it had for most of its interplanetary flight, a monument to humankind’s ingenuity and passionate drive to know the cosmos perched atop a blue-green pillar of xenon ions. If, instead, you had been in Dawn mission control watching the action, you would have been in the dark and all alone (until JPL Security arrived). There was no need to have radio contact with the reliable spaceship. It had already thrust for almost 2.9 years, or 58 percent of its time in space. Thrusting during escape was no different. No one was tense or anxious; rather, all the drama is in the spectacular results of the bold mission at Vesta and the promise of what is to come at Ceres. When Dawn entered orbit, your correspondent was dancing. When Dawn left orbit, he was sleeping serenely.

A month earlier, on August 8, with the craft more than 2,100 kilometers (1,300 miles) above the surface, patiently powering its way up through Vesta’s gravity field, one of the reaction wheels experienced an increase in internal friction. Reaction wheels are used to control a spacecraft’s orientation in the frictionless, zero-gravity conditions of spaceflight. By electrically changing a wheel’s spin rate, Dawn can rotate or stabilize itself. Protective software quickly detected the event and correctly responded by deactivating that wheel and the other two that were operating, switching to the small jets that are available for the same function, and reconfiguring other systems, including powering off the ion thrust and turning to point the main antenna to Earth.

A routine communications session the next day revealed to mission controllers what had occurred. They had planned long ago to turn the wheels off for the flight from Vesta to Ceres, so having them off a few weeks early was not a significant change. The team soon restored the spacecraft to normal operations and reformulated the departure plan, and on August 17 Dawn resumed its ascent. Because of the hiatus in thrusting, escape shifted from August 26 to September 4. The flexibility in the mission timeline provided by ion propulsion made this delay easy to accommodate.

In order to conserve the hydrazine propellant that the jets use, the bonus departure observations described before were curtailed, as they were not a high priority for the mission. Nevertheless, on August 25 and 26, at an altitude of around 6,000 kilometers (3,700 miles), the explorer did peer at Vesta once more with its camera and visible and infrared mapping spectrometer. The last time it had been this far away was July 21, 2011, during its descent to an unfamiliar destination. This time, 13 months later, the spacecraft turned back for a final gaze at the magnificent world it had unveiled during its remarkable time there, a world that prior to last year had appeared as little more than a tiny smudge among the stars for the two centuries it had been observed.

The delay in the departure schedule provided a convenient benefit. Vesta has seasons, just as Earth does, although they progress more slowly on that distant orb. August 20 was the equinox, when northern hemisphere spring began. Until then, the sun had been in Vesta’s southern hemisphere throughout Dawn’s residence there. While most of the northern hemisphere was revealed during the second high-altitude mapping orbit, the illumination of the landscape immediately around the north pole was even better for this last look. After radioing its parting shots to wistful mission controllers, the ship commenced its climb again.

And then, with an stunningly successful mission behind it, a newly explored world below it, and a mysterious dwarf planet ahead of it, the indomitable and indefatigable adventurer left Vesta forever.

Dawn is 18,500 kilometers (11,500 miles) from Vesta and 64 million kilometers (40 million miles) from Ceres. It is also 2.45 AU (367 million kilometers or 228 million miles) from Earth, or 910 times as far as the moon and 2.43 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 41 minutes to make the round trip.

Dr. Marc D. Rayman
10:00 a.m. PDT September 5, 2012

› Read previous Dawn Journals by Marc Rayman


Shedding Light on the Scarred Face of Asteroid Vesta

Thursday, July 5th, 2012

By Marc Rayman

As NASA’s Dawn spacecraft investigates its first target, the giant asteroid Vesta, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Image of the giant asteroid Vesta taken by NASA's Dawn spacecraft
This image, from NASA’s Dawn spacecraft, shows rock material that has moved across the surface and flowed into a low area in the ridged floor of the Rheasilvia basin on Vesta. The image shows how impacts and their aftermath constantly reshape the landscape. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Dear Upside Dawn Readers,

Dawn is now seeing Vesta in a new light. Once again the probe is diligently mapping the ancient protoplanet it has been orbiting for nearly a year. Circling the alien world about twice a day, the ardent adventurer is observing the signatures of Vesta’s tortured history, including the scars accumulated during more than 4.5 billion years in the main asteroid belt between Mars and Jupiter.

Having successfully completed its orbital raising maneuvers to ascend to its second high-altitude mapping orbit (HAMO2), Dawn looks down from about 680 kilometers (420 miles). This is the same height from which it mapped Vesta at the end of September and October 2011. The lifeless rocky landscape has not changed since then, but its appearance to the spacecraft’s sensors has. The first high-altitude mapping orbit (HAMO1) was conducted shortly after southern hemisphere summer began on Vesta, so the sun was well south of the equator. That left the high northern latitudes in the deep darkness of winter night. With its slower progression around the sun than Earth, seasons on Vesta last correspondingly longer. Thanks to Dawn’s capability to linger in orbit, rather than simply conduct a brief reconnaissance as it speeds by on its way to its next destination, the probe now can examine the surface with different lighting.

Much of the terrain that was hidden from the sun, and thus the camera, during HAMO1 is now illuminated. Even the scenery that was visible then is lit from a different angle now, so new observations will reveal many new details. In addition to the seasonal northward shift in the position of the sun, Dawn’s orbit is oriented differently in HAMO2, as described last month, so that makes the opportunity for new insights and discoveries even greater.

The strategy for mapping Vesta is the same in HAMO2 now as it was in HAMO1. Dawn’s orbital path takes it nearly over the north pole. (As we saw last month, the orbit does not go exactly over the poles but rather reaches to 86 degrees latitude. That slight difference is not important for this discussion.) During the ship’s southward passage over the sunlit side, the camera and the visible and infrared mapping spectrometer (VIR) acquire their precious data. After passing (almost) above the south pole, Dawn sails north over the night side. Instead of pointing its sensors at the deep black of the ground below, the probe aims its main antenna to the extremely distant Earth and radios its findings to the exquisitely sensitive receivers of the Deep Space Network. The pattern repeats as the indefatigable spacecraft completes loop after loop after loop around the gigantic asteroid every 12.3 hours.

As Dawn revolves, Vesta rotates on its axis beneath it, turning once every 5.3 hours. Just as in HAMO1, mission planners artfully choreographed this celestial pas de deux so that over the course of 10 orbits, lasting just over five days, the camera would be able to view nearly all of the lit surface. A set of 10 orbits is known to Dawn team members (and to you, loyal readers) as a mapping cycle.

Until a few months ago, HAMO2 was planned to be four cycles. Thanks to the determination in April that Dawn could extend its residence at Vesta and still meet its 2015 appointment with dwarf planet Ceres, HAMO2 has been increased to six mapping cycles (plus even a little more, as we shall see below), promising a yet greater scientific return.

In cycle 1, which began on June 23, the camera was pointed at the surface directly underneath the spacecraft. The same view will be obtained in cycle 6. In cycles 2 through 5, images are acquired at other angles, providing different perspectives on the complex and dramatic landscape. Scientists combine the pictures to formulate topographical maps, revealing Vesta’s full three-dimensional character from precipitous cliffs and towering peaks of enormous mountains to gently rolling plains and areas with mysterious ridges and grooves to vast troughs and craters punched deep into the crust. Knowing the elevations of the myriad features and the angles of slopes is essential to understanding the geological processes and forces that shaped this exotic mini-planet. In addition to the exceptional scientific value, the stereo imagery provides realistic, exciting views for anyone who wants to visualize this faraway world. If you have not traveled there yourself, be sure to visit the Image of the Day regularly and the video gallery occasionally to see what you and the rest of humankind had been missing during the two centuries of Vesta’s appearance being only that of a faint, tiny blob in the night sky.

› Continue reading Marc Rayman’s Dawn Journal


Super Swooper: Cassini wraps up its lowest pass through Titan atmosphere

Monday, June 21st, 2010
Julie Webster
Julie Webster

On Sunday evening, my eyes were glued to eight windows on my computer screen, watching data pop up every few seconds. NASA’s Cassini spacecraft was making its lowest swing through the atmosphere of Saturn’s moon Titan and I was on the edge of my seat. Trina Ray, a Titan orbiter science team co-chair, was keeping me company. Five other members of my team were also at JPL. Between us, we were keeping an eye on about 2,000 data channels.

One of the 34-meter antennas at the Deep Space Network’s Goldstone complex, DSS-24, was pointed at Saturn and listening for the signal that was expected to be here in just a few minutes. The data would be arriving at my computer as quickly as they could be sent back to Earth, though there was an agonizing hour-and-18-minute delay because of the distance the data had to travel. (We call this flyby T70, but it is actually Cassini’s 71st flyby of Titan.)

It was a nervous time for me — the previous night we had been at JPL to send some other real-time commands to the spacecraft when an alarm came in indicating that the magnetometer, the prime instrument taking data for the T70 flyby, needed a reset. Fortunately, the controller on duty immediately called the magnetometer instrument operations team lead in England. Within 90 minutes, the commands were on their way to do a computer reset and clear the alarm. At 2 a.m. Pacific time on Sunday, we got the email indicating all was well and the magnetometer was ready for the Titan closest approach.

So here we were, past one hurdle, hoping nothing else would come up. We had run hundreds of simulations over the past three-and-a-half years, so I knew we had done everything we could think to do. We did more training for this event than anything else we had done since we dropped off the Huygens probe in January 2005 for a descent through the moon’s hazy atmosphere.

Right on time, at 7:26 p.m., the Deep Space Network locked on the spacecraft downlink, a good start. I was focused on the data for spacecraft pointing. As long as we stayed within an eighth of a degree of the expected pointing, everything would be fine. At 7:45 p.m., we got the data from closest approach, a mere 880 kilometers (547 miles) in altitude. Over the vocabox, a cross between a telephone and walkie-talkie, the attitude control team reported that the thrusters were firing about twice as much as we expected. The Titan atmosphere appeared to be a little thicker than we expected, even though we had fed about 40 previous low Titan flybys by Cassini and the descent data from Huygens into our modeling.

But spacecraft control was right on the money, keeping the pointing within our predicted limits. Even with the extra thrusting, we stayed well within our safety margin.

At 7:53 p.m., the spacecraft turned away to go to the next observation. I let out a sigh of relief, happy that everything during closest approach had gone just as we planned. Five attitude control guys crowded into my office with smiles on their faces. Trina and I were marveling at what a wonderful spacecraft we have to work with. Another first for the Cassini mission!

Now, as Trina says, we have to finish the job by returning all the great science data. We have data playbacks today at two different Deep Space Network stations to make sure we have - as we say here - both belts and suspenders. Engineers will also go back to analyze the data with the scientists to see just how dense the Titan atmosphere turned out to be at our flyby altitude.

But last night, at least, my team and I went home happy!


Cassini to Swing Low Into Titan’s Atmosphere

Thursday, June 17th, 2010
César Bertucci
César Bertucci

This weekend, Cassini will embark on an exciting mission: trying to establish if Titan, Saturn’s largest moon, possesses a magnetic field of its own. This is important for understanding the moon’s interior and geochemical evolution.

For Titan scientists, this is one of the most anticipated flybys of the whole mission. We want to get as close to the surface with our magnetometer as possible for a one-of-a-kind scan of the moon. Magnetometer team scientists (including me) have a reputation for pushing the lower limits. In a world of infinite possibilities, we would have liked many flybys at 800 kilometers. But we went back and forth a lot with the engineers, who have to ensure the safety of the spacecraft and fuel reserves. We agreed on one flyby at 880 kilometers (547 miles) and both sides were happy.

Artist's concept of Cassini's Titan flyby
Cassini flies to within 880 kilometers (547 miles) of Titan’s surface during its 71st flyby of Titan, known as “T70,” the lowest in the entire mission. Image credit: NASA/JPL/Space Science Institute
› Full image and caption

Flying at this low altitude will mark the first time Cassini will be below the moon’s ionosphere, a shell of electrons and other charged particles that make up the upper part of the atmosphere. As a result, the spacecraft will find itself in a region almost entirely shielded from Saturn’s magnetic field and will be able to detect any magnetic signature originating from within Titan.

Titan orbits within the confines of the magnetic bubble around Saturn and is permanently exposed to the planet’s magnetic disturbances. Previous measurements by NASA’s Voyager spacecraft and Cassini at altitudes above 950 kilometers (590 miles) have shown that Titan does not possess an appreciable magnetic field capable of counterbalancing Saturn’s. However, this does not imply that Titan’s field is zero. We’d like to know what the internal field might be, no matter how small.

The internal structure of Titan can be probed remotely from its gravitational field or its magnetic properties. Planets with a magnetic field — like Titan’s parent Saturn or our Earth — are believed to generate their global-scale magnetic fields from a mechanism called a dynamo. Dynamo magnetic fields are generated from currents in a molten core where charge-conducting materials such as metals are flowing around each other and also undergoing other stresses because of the planet’s rotation.

We might not find a magnetic field at all. A positive detection of an internal magnetic field from Titan could imply one of the following:

a) Titan’s interior still bears enough energy to sustain a dynamo.
b) Titan’s interior is “cold” (and therefore has no dynamo), but its crust is magnetized in a similar way as Mars’ crust. If this is the case, we should find out how this magnetization took place.
c) Something under the surface of Titan got charged temporarily by Saturn’s magnetic field before this Cassini flyby. While I said earlier that the ionosphere shields the Titan atmosphere from Saturn’s magnetic bubble, the ionosphere is only an active shield when the moon is exposed to sunlight. During part of its orbit around the planet, Titan is in the dark and magnetic field lines from Saturn can reach the Titan surface. A temporary magnetic field can be created if there is a conducting layer, like an ocean, on or below the moon’s crust.

Once Cassini leaves Titan, the spacecraft will perform a series of rolls to fine-calibrate its magnetometer in order to assess T70 measurements with the highest precision. We’re looking forward to poring through the data coming down, especially after all the negotiations we had to make for them!