Posts Tagged ‘protoplanet’

So Close, Yet So Far Away: Dawn’s Trajectory Explained

Monday, March 31st, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft
Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. Image credit: NASA/JPL
› Larger image

Dear Correspondawnts,

Powering its way through deep space, Dawn draws ever closer to dwarf planet Ceres. To reach its destination, the interplanetary spaceship gently reshapes its path around the sun with its extraordinary ion propulsion system. In about a year, the spacecraft will gracefully slip into orbit so it can begin to unveil the nature of the mysterious world of rock and ice, an intriguing protoplanetary remnant from the dawn of the solar system.

Even as Dawn ascends the solar system hill, climbing farther and farther from the sun, penetrating deeper into the main asteroid belt between Mars and Jupiter, its distance to Earth is shrinking. This behavior may be perplexing for readers with a geocentric bias, but to understand it, we can take a broader perspective.

The sun is the conductor of the solar system symphony. Its gravity dictates the movements of everything that orbits it: Earth as well as the other planets, Vesta, Ceres, and myriad smaller objects, including asteroids and Dawn. (Actually, the gravity of every single body affects how all of the others move, but with more than 99 percent of the entire solar system’s mass concentrated in the gargantuan sun, it dominates the gravitational landscape.)

Whether it is for a planet or Dawn orbiting the sun, a spacecraft or moon orbiting a planet, the sun or other stars orbiting the Milky Way (the Milky Way galaxy, that is, not your correspondent’s cat Milky Way), or the Milky Way galaxy orbiting the Virgo supercluster of galaxies (home to an appreciable fraction of our readership), any orbit is the perfect balance between the inward tug of gravity and the inexorable tendency of objects to travel in a straight line. If you attach a weight to a string and swing it around in a circle, the force you use to pull on the string mimics the gravitational force the sun exerts on the bodies that orbit it. The effort you expend in keeping the weight circling serves constantly to redirect its course, forcing it to curve; if you release the string, the weight’s natural motion would take it away in a straight line (we are ignoring here the effect of Earth’s gravity on the weight).

The force of gravity dwindles as the distance increases, so the sun pulls harder on a nearby body than on a farther one. Therefore, to remain in orbit, to balance the relentless gravitational lure, the closer object must travel at higher speed, resisting the stronger attraction. The same effect applies at Earth. Satellites that orbit very close (including, for example, the International Space Station, 250 miles, or 400 kilometers, above the surface) must streak around the planet at about 17,000 mph (7.6 kilometers per second) to avoid being drawn down. The moon, orbiting almost a thousand times farther above, needs only to travel at less than 2300 mph (about 1.0 kilometers per second) to balance Earth’s weaker hold at its remote location.

For that reason, Mercury zips around the sun faster than any of the other planets. Mars travels more slowly than Earth, and the still more distant residents of the asteroid belt, whether natural (all of them but one) or a product of human ingenuity (one: Dawn), proceed at an even more leisurely pace. As Earth makes its relatively rapid annual trip around the sun, the distance to the spacecraft that left it behind in 2007 alternately shrinks and grows.

We can visualize this with one of the popular models of clocks available in the Dawn gift shop on your planet, in which the hour hand is longer than the minute hand. Imagine the sun as being at the center of the clock. The tip of the short minute hand represents Earth, and the end of the hour hand represents Dawn. Some of the time (such as between noon and shortly after 12:30), the distance between the ends of the hands increases. Then the situation reverses as the faster minute hand begins moving closer and closer to the hour hand as the time approaches about 1:05.

The Dawn spacecraft's trajectory
This graphic shows the Dawn spacecraft’s interplanetary trajectory from launch through its arrival at Ceres next year. The positions of the spacecraft and Earth are shown on April 10, 2014, when their independent orbits bring them relatively close together. Image credit: NASA/JPL-Caltech

› Larger image

Earth and Dawn are exhibiting the same repetitive behavior. Of course, their relative motion is more complicated than that of the clock hands, because Dawn’s ion thrusting is constantly changing its solar orbit (and so the distance and speed at which it loops around the sun), but the principle is the same. They have been drawing closer since August 2013. Earth, coming from behind, is now about to pass Dawn and move ahead. The stalwart probe will not even take note however, as its sights remain firmly set on an unexplored alien world.

On April 10, the separation will be 1.56 AU (1.56 times the average distance between Earth and the sun, which means 145 million miles, or 233 million kilometers), an almost inconceivably large distance (well in excess of half a million times farther than the International Space Station, which orbits Earth, not the sun) but less than it has been since September 2011. (The skeptical reader may verify this by reviewing the concluding paragraph of each log in the intervening months.) Enjoy the upcoming propinquity while you can! As the ship sails outward from the sun toward Ceres, it will never again be this close to its planet of origin. The next time Earth, taking an inside track, overtakes it, in July 2015 (by which time Dawn will be orbiting Ceres), they will only come within 1.94 AU (180 million miles, or 290 million kilometers) of each other.

By the way, Vesta, the endlessly fascinating protoplanet Dawn unveiled in 2011-2012, will be at its smallest separation from Earth of 1.23 AU (114 million miles, or 183 million km) on April 18. Ceres, still awaiting a visitor from Earth, despite having first been glimpsed from there in 1801, will attain its minimum distance on April 15, when it will be 1.64 AU (153 million miles, or 246 million km) away. It should not be a surprise that Dawn’s distance is intermediate; it is between them as it journeys from one to the other.

Finder chart showing the locations of Vesta and Ceres
This finder chart can help you locate Vesta and Ceres (and even Dawn, although it is too small to see) in the constellation Virgo. Click it for a larger version. Image credit: Sky & Telescope Magazine
› Larger image

Not only is each one nearly at its shortest geocentric range, but from Earth’s point of view, they all appear to be near each other in the constellation Virgo. In fact, they also look close to Mars, so you can locate these exotic worlds (and even the undetectably small spacecraft) in the evening sky by using the salient red planet as a signpost. In June, the coincidental celestial alignment will make Vesta and Ceres appear to be separated by only one third the diameter of the full Moon, although these behemoths of the asteroid belt will be 0.57 AU (52 million miles, or 85 million kilometers) from each other.

We mentioned above that by constantly modifying its orbit under the persistent pressure of its ion engine, Dawn complicates the simple clock-like behavior of its motion relative to Earth. On Halloween 2012, we were treated to the startling fact that to rendezvous with Ceres, at a greater distance from the sun, Dawn had to come in toward the sun for a portion of its journey; quite a trick! In that memorable log (which is here, for those readers who didn’t find every detail to be so memorable), we observed that it would not be until May 2014 that Dawn would be as far from the sun as it was on Nov. 1, 2012. Sure enough, having faithfully performed all of the complex and intricate choreography since then, it will fly to more than 2.57 AU from the solar system’s star in May, and it will continue heading outward.

With the sun behind it and without regard to where Earth or most other residents of the solar system are in their orbits, Dawn rises to ever greater heights on its extraordinary expedition. Distant though it is, the celestial ambassador is propelled by the burning passion for knowledge, the powerful yearning to reach beyond the horizon, and the noble spirit of adventure of the inhabitants of faraway Earth. The journey ahead presents many unknowns, promising both great challenges and great rewards. That, after all, is the reason for undertaking it, for such voyages enrich the lives of all who share in the grand quest to understand more about the cosmos and our humble place in it.

Dawn is 11 million miles (18 million kilometers) from Ceres. It is also 1.57 AU (146 million miles, or 235 million kilometers) from Earth, or 625 times as far as the moon and 1.57 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 26 minutes to make the round trip.

› Read more from Marc Rayman’s Dawn Journal


A Preview of Upcoming Attractions: Dawn Meets Ceres

Friday, February 28th, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at the protoplanet Ceres
This artist’s concept of NASA’s Dawn spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. Image credit: NASA/JPL-Caltech
› Larger image

Dear Ardawnt Readers,

Continuing its daring mission to explore some of the last uncharted worlds in the inner solar system, Dawn remains on course and on schedule for its rendezvous with dwarf planet Ceres next year. Silently and patiently streaking through the main asteroid belt between Mars and Jupiter, the ardent adventurer is gradually reshaping its orbit around the Sun with its uniquely efficient ion propulsion system. Vesta, the giant protoplanet it unveiled during its spectacular expedition there in 2011-2012, grows ever more distant.

In December, and January, we saw Dawn’s plans for the “approach phase” to Ceres and how it will slip gracefully into orbit under the gentle control of its ion engine. Entering orbit, gratifying and historic though it will be, is only a means to an end. The reason for orbiting its destinations is to have all the time needed to use its suite of sophisticated sensors to scrutinize these alien worlds.

Illustration of Dawn's approach phase and RC3 orbit
Following its gravitational capture by Ceres during the approach phase, Dawn will continue to use its ion propulsion system to spiral to the RC3 orbit at an altitude of 8,400 miles (13,500 kilometers). Image credit: NASA/JPL-Caltech
› Larger image

As at Vesta, Dawn will take advantage of the extraordinary capability of its ion propulsion system to maneuver extensively in orbit at Ceres. During the course of its long mission there, it will fly to four successively lower orbital altitudes, each chosen to optimize certain investigations. (The probe occupied six different orbits at Vesta, where two of them followed the lowest altitude. As the spacecraft will not leave Ceres, there is no value in ascending from its fourth and lowest orbit.) All of the plans for exploring Ceres have been developed to discover as much as possible about this mysterious dwarf planet while husbanding the precious hydrazine propellant, ensuring that Dawn will complete its ambitious mission there regardless of the health of its reaction wheels.

All of its orbits at Ceres will be circular and polar, meaning the spacecraft will pass over the north pole and the south pole, so all latitudes will come within view. Thanks to Ceres’s own rotation, all longitudes will be presented to the orbiting observer. To visualize this, think of (or even look at) a common globe of Earth. A ring encircling it represents Dawn’s orbital path. If the ring is only over the equator, the spacecraft cannot attain good views of the high northern and southern latitudes. If, instead, the ring goes over both poles, then the combined motion of the globe spinning on its axis and the craft moving along the ring provides an opportunity for complete coverage.

Dawn will orbit in the same direction it did at Vesta, traveling from north to south over the side illuminated by the distant Sun. After flying over the south pole, it will head north, the surface directly beneath it in the dark of night. When it travels over the north pole, the terrain below will come into sunlight and the ship will sail south again.

Dawn’s first orbital phase is distinguished not only by providing the first opportunity to conduct intensive observations of Ceres but also by having the least appealing name of any of the Ceres phases. It is known as RC3, or the third “rotation characterization” of the Ceres mission. (RC1 and RC2 will occur during the approach phase, as described in December.)

During RC3 in April 2015, Dawn will have its first opportunity for a global characterization of its new residence in the asteroid belt. It will take pictures and record visible and infrared spectra of the surface, which will help scientists determine its composition. In addition to learning about the appearance and makeup of Ceres, these observations will allow scientists to establish exactly where Ceres’s pole points. The axis Earth rotates around, for example, happens to point very near a star that has been correspondingly named Polaris, or the North Star. [Note to editors of local editions: You may change the preceding sentence to describe wherever the axis of your planet points.] We know only roughly where Ceres’s pole is from our telescopic studies, but Dawn’s measurements in RC3 will yield a much more accurate result. Also, as the spacecraft circles in Ceres’s gravitational hold, navigators will measure the strength of the gravitational pull and hence its overall mass.

RC3 will be at an orbital altitude of about 8,400 miles (13,500 kilometers). From there, the dwarf planet will appear eight times larger than the moon as viewed from Earth, or about the size of a soccer ball seen from 10 feet (3.1 meters). At that distance, Dawn will be able to capture the entire disk of Ceres in its pictures. The explorer’s camera, designed for mapping unfamiliar extraterrestrial landscapes from orbit, will see details more than 20 times finer than we have now from the Hubble Space Telescope.

Although all instruments will be operated in RC3, the gamma-ray and neutron detector (GRaND) will not be able to detect the faint nuclear emissions from Ceres when it is this far away. Rather, it will measure cosmic radiation. In August we will learn more about how GRaND will measure Ceres’s atomic composition when it is closer.

It will take about 15 days to complete a single orbital revolution at this altitude. Meanwhile, Ceres turns on its axis in just over nine hours (more than two and a half times faster than Earth). Dawn’s leisurely pace compared to the spinning world beneath it presents a very convenient way to map it. It is almost as if the probe hovers in place, progressing only through a short arc of its orbit as Ceres pirouettes helpfully before it.

When Dawn is on the lit side of Ceres over a latitude of about 43 degrees north, it will point its scientific instruments at the unfamiliar, exotic surface. As Ceres completes one full rotation, the robot will fill its data buffers with as much as they can hold, storing images and spectra. By then, most of the northern hemisphere will have presented itself, and Dawn will have traveled to about 34 degrees north latitude. The spacecraft will then aim its main antenna to Earth and beam its prized findings back for all those who long to know more about the mysteries of the solar system. When Dawn is between 3 degrees north and 6 degrees south latitude, it will perform the same routine, acquiring more photos and spectra as Ceres turns to reveal its equatorial regions. To gain a thorough view of the southern latitudes, it will follow the same strategy as it orbits from 34 degrees south to 43 degrees south.

When Dawn goes over to the dark side, it will still have important measurements to make (as long as Darth Vader does not interfere). While the surface immediately beneath it will be in darkness, part of the limb will be illuminated, displaying a lovely crescent against the blackness of space. Both in the southern hemisphere and in the northern, the spacecraft will collect more pictures and spectra from this unique perspective. Dawn’s orbital dance has been carefully choreographed to ensure the sensitive instruments are not pointed too close to the Sun.

› Continue reading Marc Rayman’s February 2014 Dawn Journal


NASA’s Dawn Plans for Planetary Shores Ahead

Tuesday, December 31st, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

NASA Dawn spacecraft between its targets, Vesta and Ceres
Artist’s concept of NASA’s Dawn spacecraft between the giant asteroid Vesta and the dwarf planet Ceres. Image credit: NASA/JPL-Caltech

Dear Clairvoydawnts,

Now more than halfway through its journey from protoplanet Vesta to dwarf planet Ceres, Dawn is continuing to use its advanced ion propulsion system to reshape its orbit around the sun. Now that the ship is closer to the uncharted shores ahead than the lands it unveiled astern, we will begin looking at the plans for exploring another alien world. In seven logs from now through August, we will discuss how the veteran adventurer will accomplish its exciting mission at Ceres. By the time it arrives early in 2015 at the largest object between Mars and Jupiter, readers will be ready to share not only in the drama of discovery but also in the thrill of an ambitious undertaking far, far from Earth.

Mission planners separate this deep-space expedition into phases. Following the “launch phase” was the 80-day “checkout phase”. The “interplanetary cruise phase” is the longest. It began on December 17, 2007, and continued to the “Vesta phase,” which extended from May 3, 2011, to Sept. 4, 2012. We are back in the interplanetary cruise phase again and will be until the “Ceres phase” begins in 2015. (Other phases may occur simultaneously with those phases, such as the “oh man, this is so cool phase,” the “we should devise a clever name for this phase phase,” and the “lunch phase.”) Because the tasks at Vesta and Ceres are so complex and diverse, they are further divided into sub-phases. The phases at Ceres will be very similar to those at Vesta, even though the two bodies are entirely different.

In this log, we will describe the Ceres “approach phase.” The objectives of approach are to get the explorer into orbit and to attain a preliminary look at the mysterious orb, both to satisfy our eagerness for a glimpse of a new and exotic world and to obtain data that will be helpful in refining details of the subsequent in-depth investigations. The phase will start in January 2015 when Dawn is about 400,000 miles (640,000 kilometers) from Ceres. It will conclude in April when the spacecraft has completed the ion thrusting necessary to maneuver into the first orbit from which it will conduct intensive observations, at an altitude of about 8,400 miles (13,500 kilometers). For a reason to be revealed below, that orbit is known by the catchy cognomen RC3.

(Previews for the Vesta approach phase were presented in March 2010 and May 2011, and the accounts of its actual execution are in logs from June, July, and August 2011. Future space historians should note that the differing phase boundaries at Vesta are no more than a matter of semantics. At Vesta, RC3 was described as being part of the approach phase. For Ceres, RC3 is its own distinct phase. The reasons for the difference in terminology are not only unimportant, they aren’t even interesting.)

The tremendous maneuverability provided by Dawn’s uniquely capable ion propulsion system means that the exact dates for events in the approach phase likely will change between now and then. So for those of you in 2015 following a link back to this log to see what the approach plan has been, we offer both the reminder that the estimated dates here might shift by a week or so and a welcome as you visit us here in the past. We look forward to meeting you (or even being you) when we arrive in the future.

Most of the approach phase will be devoted to ion thrusting, making the final adjustments to Dawn’s orbit around the sun so that Ceres’s gravity will gently take hold of the emissary from distant Earth. Next month we will explain more about the unusual nature of the gradual entry into orbit, which will occur on about March 25, 2015.

Starting in early February 2015, Dawn will suspend thrusting occasionally to point its camera at Ceres. The first time will be on Feb. 2, when they are 260,000 miles (420,000 kilometers) apart. To the camera’s eye, designed principally for mapping from a close orbit and not for long-range observations, Ceres will appear quite small, only about 24 pixels across. But these pictures of a fuzzy little patch will be invaluable for our celestial navigators. Such “optical navigation” images will show the location of Ceres with respect to background stars, thereby helping to pin down where it and the approaching robot are relative to each other. This provides a powerful enhancement to the navigation, which generally relies on radio signals exchanged between Dawn and Earth. Each of the 10 times Dawn observes Ceres during the approach phase will help navigators refine the probe’s course, so they can update the ion thrust profile to pilot the ship smoothly to its intended orbit.

Whenever the spacecraft stops to acquire images with the camera, it also will train the visible and infrared mapping spectrometer on Ceres. These early measurements will be helpful for finalizing the instrument parameters to be used for the extensive observations at closer range in subsequent mission phases.

Dawn obtained images more often during the Vesta approach phase than it will on approach to Ceres, and the reason is simple. It has lost two of its four reaction wheels, devices used to help turn or stabilize the craft in the zero-gravity, frictionless conditions of spaceflight. (In full disclosure, the units aren’t actually lost. We know precisely where they are. But given that they stopped functioning, they might as well be elsewhere in the universe; they don’t do Dawn any good.) Dawn’s hominin colleagues at JPL, along with excellent support from Orbital Sciences Corporation, have applied their remarkable creativity, tenacity, and technical acumen to devise a plan that should allow all the original objectives of exploring Ceres to be met regardless of the health of the wheels. One of the many methods that contributed to this surprising resilience was a substantial reduction in the number of turns during all remaining phases of the mission, thus conserving the precious hydrazine propellant used by the small jets of the reaction control system.

When Dawn next peers at Ceres, nine days after the first time, it will be around 180,000 miles (290,000 kilometers) away, and the pictures will be marginally better than the sharpest views ever captured by the Hubble Space Telescope. By the third optical navigation session, on Feb. 21, Ceres will show noticeably more detail.

At the end of February, Dawn will take images and spectra throughout a complete Ceres rotation of just over nine hours, or one Cerean day. During that period, while about 100,000 miles (160,000 kilometers) distant, Dawn’s position will not change significantly, so it will be almost as if the spacecraft hovers in place as the dwarf planet pirouettes beneath its watchful eye. Dawn will see most of the surface with a resolution twice as good as what has been achieved with Hubble. (At that point in the curving approach trajectory, the probe will be south of Ceres’s equator, so it will not be able to see the high northern latitudes.) This first “rotation characterization,” or RC1, not only provides the first (near-complete) look at the surface, but it may also suggest to insightful readers what will occur during the RC3 orbit phase.

There will be six more imaging sessions before the end of the approach phase, with Ceres growing larger in the camera’s view each time. When the second complete rotation characterization, RC2, is conducted on March 16, the resolution will be four times better than Hubble’s pictures. The last photos, to be collected on March 24, will reveal features seven times smaller than could be discerned with the powerful space observatory.

The approach imaging sessions will be used to accomplish even more than navigating, providing initial characterizations of the mysterious world, and whetting our appetites for more. Six of the opportunities also will include searches for moons of Ceres. Astronomers have not found moons of this dwarf planet in previous attempts, but Dawn’s unique vantage point would allow it to discover smaller ones than would have been detectable in previous attempts.

When the approach phase ends, Dawn will be circling its new home, held in orbit by the massive body’s gravitational grip and ready to begin more detailed studies. By then, however, the pictures and other data it will have returned will already have taught Earthlings a great deal about that enigmatic place. Ceres has been observed from Earth for more than two centuries, having first been spotted on January 1, 1801, but it has never appeared as much more than an indistinct blob amidst the stars. Soon a probe dispatched by the insatiably curious creatures on that faraway planet will take up residence there to uncover some of the secrets it has held since the dawn of the solar system. We don’t have long to wait!

Dawn is 20 million miles (32 million kilometers) from Vesta and 19 million miles (31 million kilometers) from Ceres. It is also 2.42 AU (225 million miles, or 362 million kilometers) from Earth, or 1,015 times as far as the moon and 2.46 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 40 minutes to make the round trip.

› Read more entries from Marc Rayman’s Dawn Journal


Earth and Dawn on Opposite Sides Now

Friday, August 30th, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

The Dawn spacecraft's orbits
In this graphic of Dawn’s interplanetary trajectory, the thin solid lines represent the orbits of Earth, Mars, Vesta and Ceres. After leaving Vesta, Dawn’s orbit temporarily takes it closer to the Sun than Vesta, although in this view they are so close together the difference is not visible because of the thickness of the lines. Dawn will remain in orbit around Ceres at the end of its primary mission. Image credit: NASA/JPL-Caltech

Dear Antecedawnts,

Traveling confidently and alone, Dawn continues to make its way through the silent depths of the main asteroid belt. The only spacecraft ever to have orbited a resident of the vast territory between Mars and Jupiter, Dawn conducted a spectacular exploration of gigantic Vesta, revealing a complex place that resembles the terrestrial planets more than typical asteroids. Now the interplanetary adventurer is on its long journey to the uncharted dwarf planet Ceres, by far the largest of all asteroids (975 kilometers, or more than 600 miles, in equatorial diameter). In 2015, the mysterious world of rock and ice will begin to give up its ancient secrets to the immigrant from distant Earth.

Earth, Vesta, Dawn, and Ceres are following their own separate paths around the sun. The spacecraft is patiently reshaping its orbit, using its uniquely efficient ion propulsion system to accomplish a deep-space expedition that would be impossible with conventional propulsion.

As we have seen in many previous logs (including, for example, here), the higher an object’s orbit, the slower it needs to move in order to balance the gravitational pull, which diminishes with distance. Blistering Mercury orbits the sun faster than Venus, Venus goes faster than Earth, Earth goes faster than Mars, and Mars goes faster than the residents of the asteroid belt and the cold planets of the outer solar system. In the same way, satellites that orbit close to Earth, including the International Space Station, move faster than those at greater altitudes, and the moon travels even more slowly in its very high orbit.

Dawn is now a permanent inhabitant of the main asteroid belt. Therefore, the massive sun, the gravitational master of the solar system, has a weaker grip on it than on Earth. So as Dawn maneuvers from Vesta to Ceres, Earth revolves more rapidly around the sun. This month, their independent motions have taken them to their greatest separation of the year, as they are on opposite sides of the sun. How truly remarkable that humankind can accomplish such a feat!

On August 4, the planet and its robotic ambassador to the cosmos were an extraordinary 3.47 AU (519 million kilometers, or 322 million miles) apart. (To recapture the feeling of your position in the universe then, it may be helpful to know that the maximum range was attained at 4:16 a.m. PDT.) From the perspective of terrestrial observers, had they possessed the superhuman (and even supertelescopic) vision needed to descry the tiny ship far beyond the blindingly bright star, Dawn would have appeared to be very close to the sun but not directly behind it. To rendezvous with Vesta and then with Ceres, the spacecraft has tilted the plane of its solar orbit. Some of the time it is north of Earth’s orbital plane, sometimes it is south. August 4 was during the northern segment, so Dawn would have been a little north of the sun.

It’s time to refer to one of those novel clocks available in the Dawn gift shop on your planet (although if you already have such a clock, it probably doesn’t tell you that it’s time — we stand by our policy of full refunds within 24 hours, as measured by our Dawn clocks). With the sun at the center of the clock, Earth’s motion would be like that of a short minute hand. Dawn, both farther from the sun and moving more slowly, would be following the path of a longer hour hand. If we ignore the effect of the ion thrust, which is constantly changing the orbit, and the slight misalignment of the hour hand representing Dawn’s being in a different plane, the conditions on August 4 were like those at 6:00.

As time progresses and Earth continues circling the sun, it will come closer to Dawn until April 2014 (like 12:00). Even then, however, they will be over 1.55 AU (232 million kilometers, or 144 million miles) apart, and they will never be that close again. The spacecraft will continue climbing higher and higher from the sun toward Ceres, so by the time Earth loops around once more, Dawn will be even farther from it. In the meantime, when next the arrangement is like 6:00, in December 2014, the separation will be more than 3.78 AU (565 million kilometers, or 351 million miles), even greater than the remarkable range a few weeks ago.

› Continue reading Marc Rayman’s Dawn Journal


Smooth Sailing: Dawn Spacecraft Passes Endurance Test

Monday, June 3rd, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Confidawnts,

Traveling from one alien world to another, Dawn is reliably powering its way through the main asteroid belt with its ion propulsion system. Vesta, the fascinating and complex protoplanet it explored in 2011 and 2012, falls farther and farther behind as the spacecraft gently and patiently reshapes its orbit around the sun, aiming for a 2015 rendezvous with dwarf planet Ceres.

The stalwart adventurer has recently completed its longest uninterrupted ion thrust period yet. As part of the campaign to conserve precious hydrazine propellant, Dawn now suspends thrusting once every four weeks to point its main antenna to Earth. (In contrast, spacecraft with conventional chemical propulsion spend the vast majority of time coasting.) Because of details of the mission operations schedule and the schedule for NASA’s Deep Space Network, the thrust durations can vary by a few days. As a result, the spacecraft spent 31.2 days thrusting without a hiatus. This exceeds Deep Space 1’s longest sustained powered flight of 29.2 days. While there currently are no plans to thrust for longer times, the unique craft certainly is capable of doing so. The principal limitation is how much data it can store on the performance of all subsystems (pressures, temperatures, currents, voltages, valve positions, etc.) for subsequent reporting to its terrestrial colleagues.

Thanks to the ship’s dependability, the operations team has been able to devote much of its energies recently to developing and refining the complex plans for the exploration of Ceres. You might be among the privileged readers who will get a preview when we begin describing the plans later this year.

Controllers also have devised some special activities for the spacecraft to perform in the near future, accounts of which are predicted to be in the next two logs.

In addition, team members have had time to maintain their skills for when the spacecraft needs more attention. Earlier this month, they conducted an operational readiness test (ORT). One diabolical engineer carefully configured the Dawn spacecraft simulator at JPL to behave as if a pebble one-half of a centimeter (one-fifth of an inch) in diameter shooting through the asteroid belt collided with the probe at well over twice the velocity of a high-performance rifle bullet.

When the explorer entered this region of space, we discussed that it was not as risky as residents of other parts of the solar system might assume. Dawn does not require Han Solo’s piloting skills to avoid most of the dangerous rocky debris.

The robot could tolerate such a wound, but it would require some help from operators to resume normal operations. This exercise presented the spacecraft team with an opportunity to spend several days working through the diagnosis and performing the steps necessary to continue the mission (using some of the ship’s backup systems). While the specific problem is extremely unlikely to occur, the ORT provided valuable training for new members of the project and served to keep others sharp.

One more benefit of the smooth operations is the time that it enables your correspondent to write his third shortest log ever. (Feel free to do the implied research.) Frequent readers can only hope he strives to achieve such a gratifying feat again!

Dawn is 13 million kilometers (7.9 million miles) from Vesta and 54 million kilometers (34 million miles) from Ceres. It is also 3.25 AU (486 million kilometers or 302 million miles) from Earth, or 1,275 times as far as the moon and 3.20 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 54 minutes to make the round trip.

› Read previous Dawn Journals by Marc Rayman


To Be in the Right Place, Dawn Catches Up With Time

Wednesday, May 1st, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

The Dawn spacecraft's orbits
In this graphic of Dawn’s interplanetary trajectory, the thin solid lines represent the orbits of Earth, Mars, Vesta and Ceres. After leaving Vesta, Dawn’s orbit temporarily takes it closer to the Sun than Vesta, although in this view they are so close together the difference is not visible because of the thickness of the lines. Dawn will remain in orbit around Ceres at the end of its primary mission. Image credit: NASA/JPL-Caltech

Dear Dawnscerning Readers,

Nearly three times as far from Earth as the sun is, the Dawn spacecraft is making very good progress on its ambitious trek from Vesta to Ceres. After a spectacular adventure at the second most massive resident of the main asteroid belt between Mars and Jupiter, Dawn used its extraordinary ion propulsion system to leave it behind and undertake the long journey to a dwarf planet.

Ceres orbits the sun outside Vesta’s orbit, yet Dawn is now closer to the sun than both of these alien worlds. How can it be that as the probe climbs from one to the other, it seems to be falling inward? Perhaps the answer lies in the text below; let’s venture on and find out!

On Halloween we discussed why Dawn is heading in toward the sun, but this question is different. Vesta also is getting closer to the sun, but what’s of interest now is that Dawn, despite its more remote destination, has been approaching the sun more quickly. That earlier log stands out as the best one ever written on this exciting mission in the entire history of October 2012, but if you prefer not to visit it now, we can summarize here the explanation for the spacecraft moving toward the sun. Like all members of the sun’s entourage, Vesta and Ceres follow elliptical orbits, their distances from the master of the solar system growing and shrinking as they loop around it. Even Earth’s orbit, although nearly round, certainly is not perfectly circular. Our planet is a little closer to the sun in the northern hemisphere winter (southern hemisphere summer) than it is in the summer (southern hemisphere winter). Dawn’s orbit is elliptical as well, so it naturally moves nearer to the sun sometimes, and now is such a time. But that does not address why it is currently closer to the sun than Vesta, even though it is seeking out the more distant Ceres.

Because it will orbit Ceres, and not simply fly past it (which would be significantly easier but less valuable), Dawn must make its own orbit around the sun be identical to its target’s. But that is not the entire story. After spending 14 months orbiting Vesta, Dawn’s challenge is more than to change the shape of its orbit to match Ceres’s. The spacecraft also must be at the same place in Ceres’s heliocentric orbit that Ceres itself is.

It would not be very rewarding to follow the same looping path around the sun but always be somewhere else on that path. You can visualize this if you have one of the many defective — er, exotic clocks from the Dawn gift shop on your planet that have two minute hands. If the clock starts with one hand pointed at 12 and another pointed at 1, they will take the same repetitive route, but neither hand will ever catch up with the other. For Dawn’s goal of exploring Ceres, this would not prove satisfying. Therefore, part of the objective of the ion thrusting is to ensure the spacecraft arrives not only on the same heliocentric course as Ceres but is there when Ceres is also.

This is a problem familiar to all readers who have maneuvered in orbit, where the principles of orbital mechanics are the rules of the road. To solve it, we rely on one of the laws that we have addressed many times in these logs: objects in a lower orbit travel faster. We described this in more detail in February, and we can recall the essential idea here. The gravitational attraction of any body, whether it is the sun, Earth, a black hole, or anything else, is greater at shorter ranges. So to balance that strong inward pull, an orbiter is compelled to race around quickly. At higher orbits, where gravity is weaker, a more leisurely orbital pace suffices.

We can take advantage of this characteristic of orbits. If we drop to a slightly lower orbit, we travel along more swiftly. That is precisely what Dawn needs to do in order to ensure that when it finishes expanding and tilting its orbit in 2015 so that it is the same as Ceres’s, it winds up at the same location as its target. This would be like speeding up the minute hand that had begun at the 12, allowing it to catch up with the hand that would otherwise always be leading it.

› Continue reading Marc Rayman’s Dawn Journal


While Dawn Keeps Cruising, Engineers Carry On

Friday, March 29th, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Indawnstrious Readers,

In the depths of the main asteroid belt between Mars and Jupiter, far from Earth, far even from any human-made object, Dawn remains in silent pursuit of dwarf planet Ceres. It has been more than six months since it slipped gracefully away from the giant protoplanet Vesta. The spacecraft has spent 95 percent of the time since then gently thrusting with its ion propulsion system, using that blue-green beam of high velocity xenon ions to propel itself from one alien world to another.

The ship set sail from Earth more than two thousand days ago, and its voyage on the celestial seas has been wonderfully rewarding. Its extensive exploration of Vesta introduced humankind to a complex and fascinating place that had only been tantalizingly glimpsed from afar with telescopes beginning with its discovery 206 years ago today. Thanks to the extraordinary capability of ion propulsion, Dawn was able to spend 14 months orbiting Vesta, observing dramatic landscapes and exotic features and collecting a wealth of measurements that scientists will continue to analyze for many years.

When it was operating close to Vesta, the spacecraft was in frequent contact with Earth. It took Dawn quite a bit of time to beam the 31,000 photos and other precious data to mission control. In addition, engineers needed to send a great many instructions to the distant adventurer to ensure it remained healthy and productive in carrying out its demanding work in the unforgiving depths of space.

Dawn is now more than 20 times farther from Vesta than the moon is from Earth. Alone again and on its long trek to Ceres, it is not necessary for the ship to be in radio contact as often. As we saw in November, the spacecraft now stops ion thrusting only once every four weeks to point its main antenna to Earth. This schedule conserves the invaluable hydrazine propellant the explorer will need at Ceres. But communicating less frequently does not mean the mission operations team is any less busy. Indeed, as we have explained before, “quiet cruise” consists of a considerable amount of activity.

Each time Dawn communicates with Earth, controllers transmit a second-by-second schedule for the subsequent four weeks. They also load a detailed flight profile with the ion throttle levels and directions for that period. It takes about three weeks to calculate and formulate these plans and to analyze, check, double check, and triple check them to ensure they are flawless before they can be radioed to Dawn.

In addition to all the usual information Dawn needs to keep flying smoothly, operators occasionally include some special instructions. As one example, over the last few months, they have gradually lowered the temperatures of some components slightly in order to reduce heater power. When Dawn stretched out its solar array wings shortly after separating from the Delta rocket on September 27, 2007, its nearly 65-foot wingspan was the longest of any NASA interplanetary probe. The large area of solar cells is needed to collect enough light from the distant sun to power the ion propulsion system and all other spacecraft systems. Devoting a little less power to heaters allows more power to be applied to ionizing and accelerating xenon, yielding greater thrust. With two and a half years of powered flight required to travel from Vesta to Ceres, even a little extra power can make a worthwhile difference to a mission that craves power.

Most temperature adjustments are only two degrees Celsius (3.8 degrees Fahrenheit) at a time, but even that requires careful analysis and investigation, because lowering the temperature of one component may affect another. Xenon and hydrazine propellants need to be maintained in certain ranges, and the lines they flow through follow complicated paths around the spacecraft, so the temperatures all along the way matter. Most of the hardware onboard, from valves and switches to electronics to structural mounts for sensitively aligned units, needs to be thermally regulated to keep Dawn shipshape.

It can take hours for a component to cool down and stabilize at a new setting, and sometimes the change won’t even occur until the spacecraft has turned away to resume thrusting, when the faint warmth of the sun and the deep cold of black space affect different parts of the complex robot. Then it will be another four weeks until engineers will receive a comprehensive report on all the temperatures, so they need to be cautious with each change.

› Continue reading Marc Rayman’s Dawn Journal


A Hard Day’s Flight: Dawn Achieves Orbital Velocity

Friday, March 1st, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
Artist’s concept of NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech

Dear Impordawnt Readers,

The indefatigable Dawn spacecraft is continuing to forge through the main asteroid belt, gently thrusting with its ion propulsion system. As it gradually changes its orbit around the sun, the distance to dwarf planet Ceres slowly shrinks. The pertinacious probe will arrive there in 2015 to explore the largest body between the sun and Neptune that has not yet been glimpsed by a visitor from Earth. Meanwhile, Vesta, the fascinating alien world Dawn revealed in 2011 and 2012, grows ever more distant. The mini-planet it orbited and studied in such detail now appears only as a pinpoint of light 15 times farther from Dawn than the moon is from Earth.

Climbing through the solar system atop a column of blue-green xenon ions, Dawn has a great deal of powered flight ahead in order to match orbits with faraway Ceres. Nevertheless, it has shown quite admirably that it is up to the task. The craft has spent more time thrusting and has changed its orbit under its own power more than any other ship from Earth. While most of the next two years will be devoted to still more thrusting, the ambitious adventurer has already accomplished much more than it has left to do. And now it is passing an interesting milestone on its interplanetary trek.

With all of the thrusting Dawn has completed, it has now changed its speed by 7.74 kilometers per second (17,300 mph), and the value grows as the ion thrusting continues. For space enthusiasts from Earth, that is a special speed, known as “orbital velocity.” Many satellites, including the International Space Station, travel at about that velocity in their orbits. So does this mean that Dawn has only now achieved the velocity necessary to orbit Earth? The short answer is no. The longer answer constitutes the remainder of this log.

We have discussed some of these principles before, but they are counterintuitive and questions continue to arise. Rather than send our readers on a trajectory through the history of these logs even more complicated than Dawn’s flight through the asteroid belt, we will revisit a few of the ideas here. (After substantial introspection, your correspondent granted and was granted permission to reuse not only past text but also future text.)

While marking Dawn’s progress in terms of its speed is a convenient description of the effectiveness of its maneuvering, it is not truly a measure of how fast it is moving. Rather, it is a measure of how fast it would be moving under very special (and unrealistic) circumstances. To understand this, we need to look at the nature of orbits in general and Dawn’s interplanetary trajectory in particular.

The overwhelming majority of craft humans have sent into space have remained in the vicinity of Earth, accompanying that planet on its annual revolutions around the sun. All satellites of Earth (including the moon) remain bound to it by its gravity. (Similarly, Dawn spent much of 2011 and 2012 as a satellite of distant Vesta, locked in the massive body’s gravitational grip.) As fast as satellites seem to travel compared to terrestrial residents, from the larger solar system perspective, their incessant circling of Earth means their paths through space are not very different from Earth’s itself. Consider the path of a car racing around a long track. If a fly buzzes around inside the car, to the driver it may seem to be moving fast, but if someone watching the car from a distance plotted the fly’s path, on average it would be pretty much like the car’s.

Everything on the planet and orbiting it travels around the sun at an average of 30 kilometers per second (67,000 mph), completing one full solar orbit every year. To undertake its interplanetary journey and travel elsewhere in the solar system, Dawn needed to break free of Earth’s grasp, and that was accomplished by the rocket that carried it to space more than five years ago. Dawn and its erstwhile home went their separate ways, and the sun became the natural reference for the spacecraft’s position and speed on its voyage in deep space.

Despite the enormous push the Delta II rocket delivered (with affection!) to Dawn, the spacecraft still did not have nearly enough energy to escape from the powerful sun. So, being a responsible resident of the solar system, Dawn has remained faithfully in orbit around the sun, just as Earth and the rest of the planets, asteroids, comets, and other members of the star’s entourage have.

Whether it is for a spacecraft or moon orbiting a planet, a planet or Dawn orbiting the sun, the sun orbiting the Milky Way galaxy, or the Milky Way galaxy orbiting the Virgo supercluster of galaxies (home to a sizeable fraction of our readership), any orbit is the perfect balance between the inward tug of gravity and the inexorable tendency of objects to travel in a straight path. If you attach a weight to a string and swing it around in a circle, the force you use to pull on the string mimics the gravitational force the sun exerts on the bodies that orbit it. The effort you expend in keeping the weight circling serves constantly to redirect its path; if you let go of the string, the weight’s natural motion would carry it away in a straight line (ignoring the effect of Earth’s gravity).

The force of gravity diminishes with distance, so the sun’s pull on a nearby body is greater than on a more distant one. Therefore, to remain in orbit, to balance the relentless tug of gravity, the closer object must travel faster, fighting the stronger pull. The same effect applies at Earth. Satellites that orbit very close (including, for example, the International Space Station, around 400 kilometers, or 250 miles, from the surface) must streak around the planet at about 7.7 kilometers per second (17,000 mph) to keep from being pulled down. The moon, orbiting almost 1000 times farther above, needs only to travel at about 1.0 kilometers per second (less than 2300 mph) to balance Earth’s weaker hold at that distance.

Notice that this means that for an astronaut to travel from the surface of Earth to the International Space Station, it would be necessary to accelerate to quite a high speed to rendezvous with the orbital facility. But then once in orbit, to journey to the much more remote moon, the astronaut’s speed eventually would have to decline dramatically. Perhaps speed tells an incomplete story in describing the travels of a spacecraft, just as it does with another example of countering gravity.

A person throwing a ball is not that different from a rocket launching a satellite (although the former is usually somewhat less expensive and often involves fewer toxic chemicals). Both represent struggles against Earth’s gravitational pull. To throw a ball higher, you have to give it a harder push, imparting more energy to make it climb away from Earth, but as soon as it leaves your hand, it begins slowing. For a harder (faster) throw, it will take longer for Earth’s gravity to stop the ball and bring it back, so it will travel higher. But from the moment it leaves your hand until it reaches the top of its arc, its speed constantly dwindles as it gradually yields to Earth’s tug. The astronaut’s trip from the space station to the moon would be accomplished by starting with a high speed “throw” from the low starting orbit, and then slowing down until reaching the moon.

The rocket that launched Dawn threw it hard enough to escape from Earth, sending it well beyond the International Space Station and even the moon. Dawn’s maximum speed relative to Earth on launch day was so high that Earth could not pull it back. As we saw in the explanation of the launch profile, Dawn was propelled to 11.46 kilometers per second (25,640 mph), well in excess of the space station’s orbital speed given three paragraphs above. But it has remained under the sun’s control.

Now we can think of the general problem of flying elsewhere in space as similar to climbing a hill. For terrestrial hikers, the rewards of ascent come only after doing the work of pushing against Earth’s gravity to reach a higher elevation. Similarly, Dawn is climbing a solar system hill with the sun at the bottom. It started part way up the hill at Earth; and its first rewards were found at a higher elevation, where Vesta, traveling around the sun at only about two thirds of Earth’s speed, revealed its fascinating secrets to the visiting ship. The ion thrusting now is propelling it still higher up the hill toward Ceres, which moves even more slowly to balance the still-weaker pull of the sun.

› Continue reading Marc Rayman’s Dawn Journal for more on how Dawn achieved orbital velocity


The Giant Asteroid: A Retrospective

Thursday, January 31st, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Mosaic of Dawn's images of asteroid Vesta
As NASA’s Dawn spacecraft takes off for its next destination, this mosaic synthesizes some of the best views the spacecraft had of the giant asteroid Vesta. Image credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA
› full image and caption

Dear Dawnt Look Backs,

Its long and daring interplanetary journey continuing smoothly, Dawn is making good progress in gradually reshaping its orbit around the sun. Its uniquely efficient ion propulsion system is gently bringing it closer to its next destination, dwarf planet Ceres, and ever farther from its previous one, Vesta. Although the robotic explorer’s sights are set firmly ahead, let’s take one last look back at the fascinating alien world it unveiled during its 14 months in orbit there.

Vesta, the second most massive resident of the main asteroid belt between Mars and Jupiter, was discovered in 1807. For more than two centuries thereafter, the mysterious object appeared as little more than a fuzzy patch of light among the stars. The only one of the millions of main belt asteroids to be bright enough to be visible to the naked eye, Vesta beckoned, but its invitation was not answered until Dawn arrived in July 2011, nearly four years after it left distant Earth. The cosmic ambassador is the only spacecraft ever to have orbited an object in the main asteroid belt, and its ambitious mission would have been impossible without ion propulsion.

Dawn found a complex and exotic place, and it returned a fabulously rich collection of pictures and other measurements that will continue to be analyzed for many, many years. For now, we will simply touch on a very few of the many insights that already have been illuminated by the light of Dawn.

Scientists recognize Vesta as being more like a mini-planet than like the chips of rock most people think of as asteroids. The behemoth is 565 kilometers (351 miles) wide at the equator and has a surface area more than twice that of California (although it is populated by far fewer eccentrics, billionaires, and other colorful characters found in that state). Dawn’s measurements of the gravity field provide good evidence that Vesta separated into layers, much like Earth did as the planet was forming. Vesta’s dense core, composed principally of iron and nickel, may be 200 to 250 kilometers (125 to 150 miles) across. Surrounding that is the mantle, which in turn is covered by the veneer of the crust, about 20 kilometers (12 miles) thick. The once-molten core is now solid (in contrast to Earth’s, which remains hot enough to be liquid), but the differentiation into layers gives Vesta a key distinction from most asteroids. Because it was likely still in the process of accumulating material to become a full-sized planet when Jupiter’s immense gravity terminated its growth, scientists often refer to Vesta as a protoplanet.

Among the most prominent features of the alien landscape is a huge gouge out of the southern hemisphere so large that its presence was inferred from observations with the Hubble Space Telescope. Dawn found this gigantic crater to be even deeper and wider than expected, penetrating about 19 kilometers (12 miles) and spanning more than 500 kilometers (310 miles), or nearly 90 percent of the protoplanet’s equatorial diameter.

The yawning hole is now known as Rheasilvia, after the Vestal Virgin who not only was the mythical mother of Romulus and Remus, but also surely would have been astounded by the spectacular sights on Vesta as well as the spacecraft’s capability to point any user-defined body vector in a time-varying inertial direction defined by Chebyshev polynomials. As Dawn has brought Vesta into focus, cartographers have needed labels for the myriad features it has discovered. The International Astronomical Union names Vestan craters for Vestal Virgins and other famous Roman women; mountains, canyons, and other structures are named for towns and festivals associated with the Vestal Virgins.

Vesta dates to the dawn of the solar system, more than 4.5 billion years ago, and its age shows. Myriad craters tell the story of a timeworn surface that has been subjected to the rough and tumble conditions of life in the asteroid belt ever since. A virtual rain of space rocks has fallen upon it. While Rheasilvia records the most powerful punch, from an object as much as 50 kilometers (30 miles) across, there are at least seven craters, some quite ancient indeed, more than 150 kilometers (nearly 100 miles) in diameter. As the eons pass, craters degrade and become more difficult to discern, their crisp shapes eroded by subsequent impacts large and small.

The long history of cratering is particularly evident in the startling difference between the northern and southern hemispheres. The north is very densely cratered, but the south is not. Why? The titanic blow that carved out Rheasilvia is estimated to have occurred over one billion years ago. It excavated a tremendous volume of material. Much of it fell back to the surface, wiping it clean, so the cratering record had to start all over again. Recall that the crater itself is 500 kilometers (310 miles) in diameter, and scientists estimate that 50 kilometers (30 miles) outside the rim, the debris may have piled about 5 kilometers (3 miles) high. Even at greater distances, preexisting features would have been partially or completely erased by the thick accumulation. The effect did not reach to the northern hemisphere, however, so it retained the craters than had formed before this enormous impact.

Some of the rocks were ejected with so much energy that they broke free of Vesta’s gravitational grip, going into orbit around the sun. They then went their own way as they were yanked around by the gravitational forces of Jupiter and other bodies, and many of them eventually made it to the part of the solar system where your correspondent and some of his readers spend most of their time: Earth. When our planet’s gravity takes hold of one of these Vesta escapees, it pulls the rock into its atmosphere. Some lucky witness might even observe it as a meteor. Its blazing flight to the ground is not the end of its glory, however, for these rocks are prized by planetary geologists and other enthusiasts who want a souvenir from that impact.

Scientists now know that about 6 percent of the meteorites seen to fall to Earth originated on Vesta. Six percent! One of every 16 meteorites! This is an astonishingly large fraction. Apart from Mars and the moon, Vesta is the only known source of specific meteorites. Although rocks from Vesta had to travel much farther, they far outnumber meteorites from these other two more familiar celestial bodies.

Combining laboratory studies of the numerous samples of Vesta with Dawn’s measurements at the source provides an extraordinary opportunity to gain insights into the nature of that remote world. Meteorites from Vesta are so common that they are often displayed in museums (occasionally even without the curators’ awareness of their special history) and can be obtained from many vendors. Anyone who has seen or held one surely must be moved by contemplating its origin, so distant in space and time, from well beyond Mars and long before animal or plant life arose on Earth.

› Continue reading Marc Rayman’s Dawn Journal for more Vesta history


Short Puffs Keep Dawn Chugging Along

Tuesday, December 4th, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at Ceres
Artist’s concept of NASA’s Dawn spacecraft at its next target, the protoplanet Ceres. Image credit: NASA/JPL-Caltech

Dear Dawndroids,

Dawn is continuing to gently and patiently change its orbit around the sun. In September, it left Vesta, a complex and fascinating world it had accompanied for 14 months, and now the bold explorer is traveling to the largest world in the main asteroid belt, dwarf planet Ceres.

Dawn has spent most of its time since leaving Earth powering its way through the solar system atop a column of blue-green xenon ions emitted by its advanced ion propulsion system. Mission controllers have made some changes to Dawn’s operating profile in order to conserve its supply of a conventional rocket propellant known as hydrazine. Firing it through the small jets of the reaction control system helps the ship rotate or maintain its orientation in the zero-gravity of spaceflight. The flight team had already taken some special steps to preserve this precious propellant, and now they have taken further measures. If you remain awake after the description of what the changes are, you can read about the motivation for such frugality.

Dawn’s typical week of interplanetary travel used to include ion thrusting for almost six and two-thirds days. Then it would stop and slowly pirouette to point its main antenna to Earth for about eight hours. That would allow it to send to the giant antennas of NASA’s Deep Space Network a full report on its health from the preceding week, including currents, voltages, temperatures, pressures, instructions it had executed, decisions it had made, and almost everything else save its wonderment at operating in the forbidding depths of space so fantastically far from its planet of origin. Engineers also used these communications sessions to radio updated commands to the craft before it turned once again to fire its ion thruster in the required direction.

Now operators have changed the pace of activities. Every turn consumes hydrazine, as the spacecraft expels a few puffs of propellant through some of its jets to start rotating and through opposing jets to stop. Instead of turning weekly, Dawn has been maintaining thrust for two weeks at a time, and beginning in January it will only turn to Earth once every four weeks. After more than five years of reliable performance, controllers have sufficient confidence in the ship to let it sail longer on its own. They have refined the number and frequency of measurements it records so that even with longer intervals of independence, the spacecraft can store the information engineers deem the most important to monitor.

Although contact is established through the main antenna less often, Dawn uses one of its three auxiliary antennas twice a week. Each of these smaller antennas produces a much broader signal so that even when one cannot be aimed directly at Earth, the Deep Space Network can detect its weak transmission. Only brief messages can be communicated this way, but they are sufficient to confirm that the distant ship remains healthy.

In addition to turning less often, Dawn now turns more slowly. Its standard used to be the same blinding pace at which the minute hand races around a clock (fasten your seat belt!). Engineers cut that in half two years ago but returned to the original value at the beginning of the Vesta approach phase. Now they have lowered it to one quarter of a minute hand’s rate. Dawn is patient, however. There’s no hurry, and the leisurely turns are much more hydrazine-efficient.

With these two changes, the robotic adventurer will arrive at Ceres in 2015 with about half of the 45.6-kilogram (101-pound) hydrazine supply it had when it rocketed away from Cape Canaveral on a lovely September dawn in 2007. Mission planners will be able to make excellent use of it as they guide the probe through its exploration of the giant of the main asteroid belt.

Any limited resource should be consumed responsibly, whether on a planet or on a spaceship. Hydrazine is not the only resource that Dawn’s controllers manage carefully, but let’s recall why this one has grown in importance recently.

› Continue reading Marc Rayman’s Dawn Journal


Dawn Comes Closer to Go Farther

Thursday, November 1st, 2012

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at Ceres
Artist’s concept of NASA’s Dawn spacecraft at its next target, the protoplanet Ceres. Image credit: NASA/JPL-Caltech

Dear Indawnspensable Readers,

Dawn is making good progress on the second segment of its cosmic travels. Following more than a year of arduous but sensationally productive and exciting work revealing the fascinating character of the giant protoplanet Vesta, it is now patiently pursuing its next target, the mysterious dwarf planet Ceres, which resides farther from the sun. For the second (and final) time in its interplanetary journey, however, Dawn is about to turn around, going closer to the sun rather than farther away.

In August 2008, we saw in detail how it could be that even as the bold explorer travels outward in the solar system from Earth, past Mars, to Vesta, and then on to Ceres, it could occasionally appear to reverse course temporarily. We present here a shorter explanation for those readers who did not memorize the log explaining this perplexing behavior (you know who you are, and we do as well, but your secret remains safe under the terms of our reader privacy agreement).

Dawn orbits the sun, as do Vesta, Ceres, the other residents of the main asteroid belt, and the planets. All orbits, whether of these objects around the star at the center of our solar system, artificial satellites or the moon in orbit around Earth, or even Dawn when it was in orbit around Vesta, are ellipses (like flattened circles). Earth, for example, orbits the sun at an average distance of 150 million kilometers (93.0 million miles), which astronomers call one astronomical unit (AU). During its year-long revolution, however, our planet comes in to 0.98 AU from the sun and goes out to 1.02 AU. Earthlings manage quite nicely with these small variations. (Note that the seasons are not caused by the changes in distance but instead are a result of the tilt of Earth’s axis and thus the differing angles at which the warming rays of the sun arrive during the year. If the sun’s distance were all that mattered, the northern and southern hemispheres would have the same seasons.) So, orbiting bodies move smoothly between a minimum and a maximum range from their gravitational masters rather than remaining at a constant distance.

When Dawn was in orbit around Vesta, it accompanied that world on its regular journey around the sun. The table last month showing the probe’s progress over the five years of its deep space trek reminds us that Vesta’s path brings it as close to the sun as 2.15 AU and takes it out to 2.57 AU.

If Dawn had remained in orbit around Vesta, it would have continued to follow the same elliptical course as its host in the asteroid belt. The pair would have reached their maximum solar distance next month and then would have fallen back to 2.15 AU in September 2014. While visiting Vesta was extremely gratifying, this explorer’s ambitions are greater. It broke free of Vesta’s grip, its sights set on a new and distant alien destination.

Now the spacecraft is in its own independent orbit around the sun, and the persistent but gentle pressure of its advanced ion propulsion system gradually reshapes that orbit. At any moment, the orbit is an ellipse, and an instant later, it is a slightly different ellipse, courtesy of the thrust. As Dawn departed from Vesta only last month, its orbit is not yet dramatically different, but over the course of the coming years, the effect of the thrusting will be to change the orbit tremendously. To reach Ceres in 2015, the ship will enlarge and tip its elliptical course to match the motion of the dwarf planet around the sun. (Some of the parameters characterizing each object’s orbit are shown here.)

Although the ship’s orbit is growing, it will reach the current high point on Nov. 1. It will then be 2.57 AU from the sun and, just as in 2008 (albeit at a smaller distance), it will begin moving closer, even as it continues to thrust.

If Dawn stopped thrusting on Nov. 1, its elliptical orbit would carry it down to 2.19 AU from the sun in September 2014. That’s a higher orbit than Vesta’s but still well below what it needs to be for the rendezvous with Ceres. Astute readers have already anticipated that the plan is not to stop thrusting but to continue reworking the trajectory, just as a ceramicist gradually achieves a desired shape to create the envisioned artistic result. The ongoing thrusting will raise the low point of the orbit, so if the ship follows the flight plan, it will descend only to 2.45 AU in October 2013 before sailing outward again. By May 2014 it will have risen to the same solar altitude as it is now. All the thrusting in the interim will have altered its course so much, however, that it will not turn around then; rather, it will continue ascending to keep its 2015 appointment with Ceres.

› Continue reading Marc Rayman’s Dawn Journal


Dawn Sets Its Sights on Ceres

Monday, July 30th, 2012

By Marc Rayman

As NASA’s Dawn spacecraft investigates its first target, the giant asteroid Vesta, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

near-true color image of the remarkable snowman feature on asteroid Vesta's surface
Three impact craters of different sizes, arranged in the shape of a snowman, make up one of the most striking features on Vesta, as seen in this view from NASA’s Dawn mission. In this view the three “snowballs” are upside down, so that the shadows make the features easily recognizable. North is to the lower right in the image, which has a resolution of 230 feet (70 meters) per pixel. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dear Dawnpartures,

Dawn has completed the final intensive phase of its extraordinary exploration of Vesta, and it has now begun its gradual departure. Propelled by its uniquely efficient ion propulsion system, the probe is spiraling ever higher, reversing the winding path it followed into orbit last year.

In the previous log (which gained prominence last month by making it into the list of the top 78 logs ever written on this ambitious interplanetary adventure), we saw the plan for mapping Vesta from an altitude of 680 kilometers (420 miles). In this second high-altitude mapping orbit (HAMO2), the spacecraft circled the alien world beneath it every 12.3 hours. On the half of each orbit that it was on the day side, it photographed the dramatic scenery. As it passed over the night side, it beamed the precious pictures to the distant planet where its human controllers (and many of our readers) reside. Tirelessly repeating this strategy while Vesta rotated allowed Dawn’s camera to observe the entirety of the illuminated land every five days.

The robot carried out its complex itinerary flawlessly, completely mapping the surface six times. Four of the maps were made not by pointing the camera straight down at the rocky, battered ground but rather at an angle. Combining the different perspectives of each map, scientists have a rich set of stereo images, allowing a full three dimensional view of the terrain that bears the scars of more than 4.5 billion years in the main asteroid belt between Mars and Jupiter.

Dawn also mapped Vesta six times during the first high-altitude mapping orbit (HAMO1) in September and October 2011. The reason for mapping it again is that Vesta has seasons, and they progress more slowly than on Earth. Now it is almost northern hemisphere spring, so sunlight is finally reaching the high latitudes, which were under an impenetrable cloak of darkness throughout most of Dawn’s residence here.

For most of the two centuries this mysterious orb had been studied from Earth, it was perceived as little more than a small fuzzy blob in the night sky. With the extensive imaging from HAMO1 and HAMO2, as well as from the low-altitude mapping orbit (LAMO, earthlings now know virtually all of the protoplanet’s landscape in exquisite detail.

Among the prizes for the outstanding performance in HAMO2 are more than 4,700 pictures. In addition to the comprehensive mapping, Dawn collected nearly nine million spectra with its visible and infrared mapping spectrometer (VIR) to help scientists determine more about the nature of the minerals. This phenomenal yield is well over twice that of HAMO1, illustrating the great benefit of dedicating valuable observation time in HAMO2 to VIR before the mapping.

Dawn’s measurements of the peaks and valleys, twists and turns of Vesta’s gravity field, from which scientists can map the distribution of material in the interior of the behemoth, were at their best in LAMO. That low altitude also was where the gamma ray and neutron detector (GRaND) obtained its finest data, revealing the atomic constituents of the surface and subsurface. Indeed, the motivation for undertaking the challenging descent to LAMO was for those investigations, although the bonus pictures and spectra greatly enhanced the reward. Even in HAMO2, however, gravity and GRaND studies continued, adding to an already fabulous bounty.

Mission controllers have continued to keep the distant spacecraft very busy, making the most of its limited time at Vesta. Pausing neither to rest nor to marvel or delight in its own spectacular accomplishments, when the robot finished radioing the last of its HAMO2 data to Earth, it promptly devoted its attention to the next task: ion thrusting.

Missions that use conventional propulsion coast almost all of the time, but long-time readers know that Dawn has spent most of its nearly five years in deep space thrusting with its advanced ion propulsion system, the exotic and impressive technology it inherited from NASA’s Deep Space 1. Without ion propulsion, the exploration already accomplished would have been unaffordable for NASA’s Discovery Program and the unique exploit to orbit both Vesta and dwarf planet Ceres would have been quite impossible. Ion propulsion not only enables the spacecraft to orbit residents of the main asteroid belt, something no other probe has attempted, but it also allows the interplanetary spaceship to maneuver extensively while at each destination, thus tailoring the orbits for the different investigations.

On July 25 at 9:45 a.m. PDT, as it has well over 500 times before, the sophisticated craft began emitting a beam of high-velocity xenon ions. In powered flight once again, it is now raising its orbital altitude. On August 26, the ship will be too far and traveling too fast for Vesta’s gravity to maintain its hold. Dawn will slip back into orbit around the sun with its sights set on Ceres.

Although HAMO2 is complete, the spacecraft will suspend thrusting four times to direct its instruments at Vesta during the departure phase, much as it did in the approach phase. The approach pictures aided in navigation and provided tantalizing views of the quarry we had been seeking for so long. This time, however, we will see a familiar world receding rather than an unfamiliar one approaching. But as the sun creeps north, advancing by about three quarters of a degree of latitude per week, the changing illumination around the north pole will continue to expose new features.

› Continue reading Marc Rayman’s Dawn Journal


Shedding Light on the Scarred Face of Asteroid Vesta

Thursday, July 5th, 2012

By Marc Rayman

As NASA’s Dawn spacecraft investigates its first target, the giant asteroid Vesta, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Image of the giant asteroid Vesta taken by NASA's Dawn spacecraft
This image, from NASA’s Dawn spacecraft, shows rock material that has moved across the surface and flowed into a low area in the ridged floor of the Rheasilvia basin on Vesta. The image shows how impacts and their aftermath constantly reshape the landscape. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

Dear Upside Dawn Readers,

Dawn is now seeing Vesta in a new light. Once again the probe is diligently mapping the ancient protoplanet it has been orbiting for nearly a year. Circling the alien world about twice a day, the ardent adventurer is observing the signatures of Vesta’s tortured history, including the scars accumulated during more than 4.5 billion years in the main asteroid belt between Mars and Jupiter.

Having successfully completed its orbital raising maneuvers to ascend to its second high-altitude mapping orbit (HAMO2), Dawn looks down from about 680 kilometers (420 miles). This is the same height from which it mapped Vesta at the end of September and October 2011. The lifeless rocky landscape has not changed since then, but its appearance to the spacecraft’s sensors has. The first high-altitude mapping orbit (HAMO1) was conducted shortly after southern hemisphere summer began on Vesta, so the sun was well south of the equator. That left the high northern latitudes in the deep darkness of winter night. With its slower progression around the sun than Earth, seasons on Vesta last correspondingly longer. Thanks to Dawn’s capability to linger in orbit, rather than simply conduct a brief reconnaissance as it speeds by on its way to its next destination, the probe now can examine the surface with different lighting.

Much of the terrain that was hidden from the sun, and thus the camera, during HAMO1 is now illuminated. Even the scenery that was visible then is lit from a different angle now, so new observations will reveal many new details. In addition to the seasonal northward shift in the position of the sun, Dawn’s orbit is oriented differently in HAMO2, as described last month, so that makes the opportunity for new insights and discoveries even greater.

The strategy for mapping Vesta is the same in HAMO2 now as it was in HAMO1. Dawn’s orbital path takes it nearly over the north pole. (As we saw last month, the orbit does not go exactly over the poles but rather reaches to 86 degrees latitude. That slight difference is not important for this discussion.) During the ship’s southward passage over the sunlit side, the camera and the visible and infrared mapping spectrometer (VIR) acquire their precious data. After passing (almost) above the south pole, Dawn sails north over the night side. Instead of pointing its sensors at the deep black of the ground below, the probe aims its main antenna to the extremely distant Earth and radios its findings to the exquisitely sensitive receivers of the Deep Space Network. The pattern repeats as the indefatigable spacecraft completes loop after loop after loop around the gigantic asteroid every 12.3 hours.

As Dawn revolves, Vesta rotates on its axis beneath it, turning once every 5.3 hours. Just as in HAMO1, mission planners artfully choreographed this celestial pas de deux so that over the course of 10 orbits, lasting just over five days, the camera would be able to view nearly all of the lit surface. A set of 10 orbits is known to Dawn team members (and to you, loyal readers) as a mapping cycle.

Until a few months ago, HAMO2 was planned to be four cycles. Thanks to the determination in April that Dawn could extend its residence at Vesta and still meet its 2015 appointment with dwarf planet Ceres, HAMO2 has been increased to six mapping cycles (plus even a little more, as we shall see below), promising a yet greater scientific return.

In cycle 1, which began on June 23, the camera was pointed at the surface directly underneath the spacecraft. The same view will be obtained in cycle 6. In cycles 2 through 5, images are acquired at other angles, providing different perspectives on the complex and dramatic landscape. Scientists combine the pictures to formulate topographical maps, revealing Vesta’s full three-dimensional character from precipitous cliffs and towering peaks of enormous mountains to gently rolling plains and areas with mysterious ridges and grooves to vast troughs and craters punched deep into the crust. Knowing the elevations of the myriad features and the angles of slopes is essential to understanding the geological processes and forces that shaped this exotic mini-planet. In addition to the exceptional scientific value, the stereo imagery provides realistic, exciting views for anyone who wants to visualize this faraway world. If you have not traveled there yourself, be sure to visit the Image of the Day regularly and the video gallery occasionally to see what you and the rest of humankind had been missing during the two centuries of Vesta’s appearance being only that of a faint, tiny blob in the night sky.

› Continue reading Marc Rayman’s Dawn Journal


All Eyes on Asteroid Vesta

Friday, March 30th, 2012

By Marc Rayman

As NASA’s Dawn spacecraft investigates its first target, the giant asteroid Vesta, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Layered young crater as imaged by NASA's Dawn spacecraft
This image from NASA’s Dawn spacecraft shows a young crater on Vesta that is 9 miles (15 kilometers) in diameter. Layering is visible in the crater walls, as are large boulders that were thrown out in the material ejected from the impact. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA |
› Full image and caption

Dear Dawnscoverers,

On March 29, Vesta spent the 205th anniversary of its discovery by treating Dawn to more spectacular vistas, as it does so often these days. When Heinrich Wilhelm Matthäus Olbers first spotted Vesta, he could hardly have imagined that the power of the noble human spirit for adventure and the insatiable hunger for knowledge would propel a ship from Earth to that mysterious point of light among the stars. And yet today our spacecraft is conducting a detailed and richly rewarding exploration of the world that Olbers found.

Dawn is continuing its intensive low-altitude mapping orbit (LAMO) campaign, scrutinizing the protoplanet 210 kilometers (130 miles) beneath it with all instruments. The primary objectives of the craft’s work here are to measure the atomic composition and the interior distribution of mass in this geologically complex world. In addition, this low orbit provides the best vantage point for high resolution pictures and visible and infrared spectra to reveal the nature of the minerals on the surface.

Ever since it left its home planet behind in September 2007, the robotic adventurer has pursued its own independent course through the solar system. As Earth and its orbiting retinue (including the moon and many artificial satellites) followed their repetitive annual loop around the sun, Dawn used its ion propulsion system to spiral outward to rendezvous with Vesta in July 2011. When the gigantic asteroid’s gravity gently took hold of the visiting craft, the two began traveling together around the sun, taking the same route Vesta has since long before humans gazed in wonder at the nighttime sky.

As we have discussed before, the speed of an object in orbit, whether around Earth, the sun, the Milky Way (either my cat or the galaxy of the same name) or anything else, decreases as its orbital altitude increases. Farther from the sun than Earth is, and hence bound to it by a weaker gravitational grip, Vesta moves at a more leisurely pace, taking more than 3.6 years per revolution. When Dawn travels to the more remote Ceres, it will orbit the sun even more slowly, eventually matching Ceres’ rate of 4.6 years for each loop.

Just as the hour hand and minute hand of a clock occasionally are near each other and at other times are on opposite sides of the clock face, Earth and Dawn sometimes are relatively close and other times are much farther apart. Now their orbits are taking them to opposite sides of the sun, and the distance is staggering. They have been on opposite sides of the sun twice before (albeit not as far apart as this time), in November 2008 and November 2010. We used both occasions to explain more about the nature of the alignment as well as to contemplate the profundity of such grand adventures.

On April 18, Dawn will attain its greatest separation yet from Earth, nearly 520 million kilometers (323 million miles) or more than 3.47 astronomical units (AU). Well beyond Mars, fewer than a dozen spacecraft have ever operated so far from Earth. Those interested in the history of space exploration (such as your correspondent) will enumerate them, but what should be more rewarding is marveling at the extent of humanity’s reach. At this extraordinary range, Dawn will be nearly 1,400 times farther than the average distance to the moon (and 1,300 times farther than the greatest distance attained by Apollo astronauts 42 years ago). The deep-space ship will be well over one million times farther from Earth than the International Space Station and Tiangong-1.

Vesta does not orbit the sun in the same plane that Earth does. Indeed, a significant part of the challenge in matching Dawn’s orbit to Vesta’s was tipping the plane of its orbit from Earth’s, where it began its journey, to Vesta’s, where it is now. As a result, when they are on opposite sides of the sun this time, Dawn will not appear to go directly behind the sun but rather will pass a little south of it. In addition, because the orbits are not perfectly circular, the greatest separation does not quite coincide with the time that Dawn and the sun appear to be most closely aligned. The angular separation will be at its minimum of less than five degrees (about 10 times the angular size of the sun itself) on April 9, but the sun and Dawn appear to be within ten degrees of each other from March 23 until April 27. For our human readers, that small angle is comparable to the width of your palm at arm’s length, providing a handy way to find the approximate position of the spacecraft in the sky. Earth’s robotic ambassador to the cosmos began east of the salient celestial signpost and progresses slowly to the west over the course of those five weeks. Readers are encouraged to step outside and join your correspondent in raising a saluting hand to the sun, Dawn, and what we jointly accomplish in our efforts to gain a perspective on our place in the universe.

For those awestruck observers who lack the requisite superhuman visual acuity to discern the faraway spacecraft amidst the dazzling light of the sun, this alignment provides a convenient occasion to reflect once again upon missions deep into space. Formed at the dawn of the solar system, Vesta, arguably the smallest of the terrestrial planets, has waited mostly in patient inconspicuousness for a visit from the largest terrestrial planet. For the entire history of life on Earth, the inhabitants remained confined to the world on which they have lived. Yet finally, one of the millions upon millions of species, inspired by the splendor of the universe, applied its extraordinary talents and collective knowledge to overcome the limitations of planetary life and strove to venture outward. Dawn is the product of creatures fortunate enough to be able to combine their powerful curiosity about the workings of the cosmos with their impressive abilities to explore, investigate and ultimately understand. While its builders remain in the vicinity of the planet upon which they evolved, their emissary now is passing on the far side of the sun! This is the same sun that is more than 100 times the diameter of Earth and a third of a million times its mass. This is the same sun that has been the unchallenged master of our solar system for more than 4.5 billion years. This is the same sun that has shone down on Earth throughout that time and has been the ultimate source of so much of the heat, light and other energy upon which the planet’s residents have been so dependent. This is the same sun that has so influenced human expression in art, literature, mythology and religion for uncounted millennia. This is the same sun that has motivated scientific studies for centuries. This is the same sun that is our signpost in the Milky Way galaxy. And humans have a spacecraft on the far side of it. We may be humbled by our own insignificance in the universe, yet we still undertake the most valiant adventures in our attempts to comprehend its majesty.

Dawn is 210 kilometers (130 miles) from Vesta. It is also 3.45 AU (516 million kilometers or 321 million miles) from Earth, or 1,290 times as far as the moon and 3.45 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 57 minutes to make the round trip.


Getting the Lowdown on Asteroid Vesta

Monday, December 5th, 2011

By Marc Rayman

As NASA’s Dawn spacecraft investigates its first target, the giant asteroid Vesta, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Still from a 3-D video incorporating images from NASA's Dawn spacecraft
This 3-D video incorporates images from the framing camera instrument aboard NASA’s Dawn spacecraft from July to August 2011. The images were obtained as Dawn approached Vesta and circled the giant asteroid during the mission’s survey orbit phase. Survey orbit took place at an altitude of about 1,700 miles (2,700 kilometers). To view this video in 3-D use red-green, or red-blue, glasses (left eye: red; right eye: green/blue). Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
› See video

Dear Dawnward Spirals,

Continuing its ambitious campaign of exploration deep in the asteroid belt, Dawn has spent most of the past month spiraling ever closer to Vesta. Fresh from the phenomenal success of mapping the alien world in detail in October, the spacecraft and its human team members are engaged in one of the most complicated parts of the mission. The reward will be the capability to scrutinize this fascinating protoplanet further.

Thanks to the extraordinary performance of its ion propulsion system, Dawn can maneuver to different orbits that are best suited for conducting each of its scientific observations. The probe is now headed for its low altitude mapping orbit (LAMO), where the focus of its investigations will be on making a census of the atomic constituents with its gamma ray and neutron sensors and on mapping the gravity field in order to determine the interior structure of this protoplanet.

As secondary objectives, Dawn will acquire more images with its camera and more spectra with its visible and infrared mapping spectrometer. As we will see in a future log, these measurements will receive a smaller share of the resources than the high priority studies. The spectacular pictures obtained already will keep scientists happy for years, and you can continue to share in the experience of marveling at the astonishing discoveries by seeing some of the best views here, including scenes captured during the spiral to LAMO.

Planning the low altitude mapping orbit around massive Vesta, with its complicated gravity field, required a great deal of sophisticated analysis. Before Dawn arrived, mission designers studied a range of possible gravitational characteristics and honed the methods they would use for plotting the actual orbit once the details of the protoplanet’s properties were ascertained. In the meantime, the team used a tentative orbit at an altitude over the equator of 180 kilometers (110 miles). As explained in a previous log, the altitude varies both because the orbit is not perfectly circular and because Vesta displays such exceptional topography. The highest elevations turn out to be at the equator, and the average altitude of that orbit would be 200 kilometers (125 miles).

Now that navigators have measured Vesta’s gravity, they have the knowledge to refine the design for LAMO, and they decided to raise it by 10 kilometers (6 miles). The target then is an average altitude of 210 kilometers (130 miles). But there is more to the specification of the orbit than simply its height. To meet all of the scientific objectives, the orientation of this orbit needs to be different from the orientation of the previous orbits, the high altitude mapping orbit (HAMO) and survey orbit.

› Continue reading Marc Rayman’s Dawn Journal


Taken In by the Giant Asteroid Vesta

Monday, July 18th, 2011

By Marc Rayman

NASA’s Dawn spacecraft has just arrived at its first target, the giant asteroid Vesta. Each month, Marc Rayman, Dawn’s chief engineer, shares an update on the mission’s progress.

Latest Image of Vesta captured by Dawn on July 17, 2011
This is the first image obtained by NASA’s Dawn spacecraft after successfully entering orbit around Vesta. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA › See more images

Dear Residawnts of Vesta,

Dawn has arrived!!

After covering 2.8 billion kilometers (1.7 billion miles) on its own, after traveling for nearly four years through the lonely emptiness of interplanetary space, after being bound by the gravity only of the sun, Dawn is finally in orbit around Vesta. To get here, it gently propelled itself with its ion propulsion system for 70% of its journey, or more than 2.6 years. Deep in the asteroid belt, far from its planet of origin, well beyond Mars (which it visited ever so briefly more than two years ago), where no spacecraft has ever been before, Dawn now resides with a giant.

While more detailed navigational analyses will be required to determine the exact time, around 10 p.m. PDT on July 15, as the spacecraft performed its familiar routine of ion thrusting, its orbit around the sun finally was so close to that of Vesta that the protoplanet’s gravity could take hold of it. Dawn was only about 16,000 kilometers (9,900 miles) above the ancient, scarred surface of the alien world. Traveling together around the sun at more than 20.5 kilometers per second (46,000 mph), their orbits were so similar that the cosmic craft was closing in at the leisurely speed of only 27 meters per second (60 mph). The last time it approached a nearby destination so slowly was in April 2007. At that time, it used more conventional propulsion technology: it rode on a truck from Washington, DC to Cape Canaveral, Florida.

That may be too many numbers for some readers (and too few for our good friends the Numerivores). But it all reduces to one cool fact: humankind has succeeded in delivering an interplanetary spaceship to orbit around one of the largest objects in the main asteroid belt between Mars and Jupiter. Indeed, Dawn is the first spacecraft to orbit any object in the main belt.

The probe slipped gently into orbit with the same grace it has displayed during its nearly 1000 days of ion thrusting through the solar system. Although the unusual nature of the spiral capture has been explained in detail before, there is one important difference (in addition to some minor ones) from previous descriptions: now it is history.

Dawn has orbited two other bodies. Shortly after it left Cape Canaveral atop a fiery rocket, the spacecraft spent about 45 minutes in Earth orbit, waiting for the proper orbital alignment to begin its ambitious deep-space voyage. Once the rocket gave it enough energy to leave the planet behind, Dawn orbited the sun as surely as Earth and the other planets do, although, of course, it spent most of its time reshaping that orbit. Now it is orbiting Vesta, as surely as the moon orbits Earth.

Entering orbit around the protoplanet is essential to Dawn’s plans for comprehensive studies of this exotic world, but simply being in orbit is not adequate. The craft did not miss a beat as it flew into Vesta’s grasp; it is spiraling around its new master as it aims for its first science orbit at an altitude of 2700 kilometers (1700 miles). The intensive scrutiny of Vesta from survey orbit will begin in the second week of August.

It’s a noteworthy coincidence that Earth and Vesta will happen to be very well aligned then. As they follow their independent orbits around the sun, occasionally their paths bring them relatively near to each other. So just as Dawn begins looking closely at Vesta, so too can residents of Earth. The protoplanet is the brightest object in the asteroid belt, and the only one ever visible to unaided terrestrial eyes, although binoculars or a telescope make it much easier to spot, especially under skies that are brightened by the lights of cities.

Even when their separation is at its minimum, Earth and Vesta will come only to within about 1.23 AU (184 million kilometers or 114 million miles) of each other. While their closest approach is late at night on July 31, the geometry changes slowly enough that there are good viewing opportunities well before and after. Go here for guidance on how to find Vesta in the constellation Capricornus. And if you are fortunate enough to glimpse that distant point of light, let your imagination add to the scene the recent immigrant from Earth, representing you and the rest of humankind on its mission of exploration. There, far from its erstwhile home and the beings who urge it on, this ambitious adventurer is translating that dot of light among the myriad stars into an exciting and fascinating account of the dawn of the solar system.

Dawn has spent most of its time since the last log thrusting as usual. The thrusting even at the time it was captured by Vesta’s gravity was no different. We have seen before that, in stark contrast to the tension when other missions enter orbit, with ion propulsion, the process is very calm indeed. For that matter, since May 2010, Dawn has thrust with its radio transmitter turned off, devoting that precious power to accelerating xenon ions rather than generating radio waves. The ship continued in silence when it went into orbit on Friday night. Mission control was empty, there being no need to monitor the probe’s operation. In fact, your correspondent was dancing, confident that the pas de deux being performed 188 million kilometers (117 million miles) away would be executed with graceful beauty and flawless precision.

Confirmation that Dawn was in orbit came shortly before 11:30 pm PDT on July 16 (more than 24 hours after it glided into orbit) when its radio signals were received at the Deep Space Network. Following its preprogrammed sequence of instructions, the spacecraft acquired more images of Vesta earlier in the evening and then initiated communications with Earth right on schedule. Observing that it was in good health and continuing to perform all of its functions demonstrated that it had achieved orbit. The choreography was beautiful!

Reliable as Dawn is, it did experience an unexpected interruption in thrust recently. On June 27, a cosmic ray, a high energy subatomic particle traveling through space, apparently managed to strike an electrical component on the spacecraft in an especially effective way. The component is used by the ion propulsion system computer controller to operate valves in the complex plumbing that transports xenon from the main tank to the operating thruster. The propellant needs to be delivered at just the right rate for optimal performance. When the cosmic ray deposited its energy in that device, it deprived the circuit of the ability to send signals to the valves, even when directed to do so by the computer. (A cosmic ray is the most likely culprit, but other explanations for the circuit’s inaction are still being considered.) As a result, when it was time to open valves to feed a little more xenon into the thruster, the controller was unable to comply. The computer detected the problem, followed the appropriate procedure for terminating thrust, and alerted the main spacecraft computer. That computer correctly responded by canceling other planned activities and commanding the ship into one of its safe modes. In this case, because all other systems were healthy, it was not necessary to invoke the normal safe mode. Rather, the robot properly chose to make fewer reconfigurations. It pointed its main antenna to Earth and transmitted its status, awaiting a response from controllers.

The Deep Space Network began a routine communications session early on June 28, and the Dawn team immediately understood the spacecraft condition. Before the end of the day, they had restored it to its normal flight mode and made preparations to activate the other controller.

Dawn had been using controller #1 and ion thruster #3 since December. With the controller unable to operate valves, engineers instructed the ship to switch to controller #2, which was in command for most of the thrusting in 2010. Its ability to operate the valves was not compromised. That unit can be used with thruster #2 and #3, but it was faster to formulate commands to use thruster #2, so in the interest of time, that was the choice.

Later this summer, engineers will conduct tests with controller #1 to assess its health and determine whether its valve signals can be restored. That controller operates thruster #1 and #3. Mission planners had long ago decided not to use venerable #1 for the rest of the mission, as it requires slightly more power than its siblings, so whether controller #1 will be fully functional or not, Dawn’s extraterrestrial expedition can be completed as planned with controller #2.

Once the spacecraft had deviated from its intended flight plan by not thrusting, navigators had to devise a new plan to fly to Vesta. To ensure there would be enough time to make up for the lost thrust, they removed one of the navigation imaging sessions (and the communications period that followed it) from the schedule and another routine communications session. Of course, as experienced interplanetary explorers, Dawn’s mission team had always recognized that glitches could interfere with any activity, so more imaging and more communications had been planned than truly were required. Doing without a few to allow time for some compensatory thrusting was easily accommodated.

In order to resume thrusting quickly, controllers chose not to optimize the plan but rather simply to devise a plan that was adequate. The consequence was that they ended up giving Dawn more time to thrust than it really even needed. The entire episode beginning with the balky controller cost 1.2 days of thrust, and the revised plan added 1.8 days of thrust at other times. As a result, the insertion into orbit shifted 15 hours earlier. Such flexibility is another of the many differences between missions that use ion propulsion and those that use conventional propulsion.

Before restarting its powered flight, however, the team was eager to allow Dawn to conduct its first planned observation of Vesta throughout one full rotation of the protoplanet on its axis, a Vestian day of 5 hours 20 minutes. (This and other activities during the approach phase were described last year.) Thanks to the fleet and flawless work of the team, that was carried out on schedule on June 29-30, and all the planned images were acquired. The visible and infrared mapping spectrometer (VIR) also peered at Vesta to provide additional information for use in setting instrument parameters for the science observations in survey orbit. After it acquired two excellent sets of data, its internal computer detected an unexpected condition, so it did not complete the rest of its activities. As the camera’s images were beaming back to Earth on June 30, engineers verified that VIR was in good condition, and they will study its telemetry further as they continue to plan for its important measurements of the minerals that compose Vesta’s surface.

In the original itinerary, ion thrusting would recommence after the communications session on June 30. And that is exactly what occurred, even with the unplanned thrusting hiatus in the preceding days. Dawn continued closing in on Vesta with the gentle pressure of thruster #2, just as it still is today.

As a reminder, an easy way you can have the same otherworldly view of Vesta as Dawn is to visit here. These logs generally will not provide interpretations of the rich bounty of images (but they are fantastic, aren’t they?) or other fascinating measurements. As the data are assessed by Dawn’s team of planetary scientists from four countries, news of the results will be distributed by NASA’s and JPL’s news organizations. And for more frequent updates on the progress of the mission than are provided in these logs, readers may want to go here, where your correspondent abandons his idiolect to provide extremely brief reports much more often (with much less, ahem, color).

On July 9-10, the spacecraft’s agenda included another pause in thrusting. This time, in addition to acquiring its second set of images while Vesta completed a full rotation, Dawn photographed the space around Vesta in search of moons. Remote observations with the Hubble Space Telescope and other observatories on Earth had not found any, but that did not rule out their presence. As no moons had been detected yet, however, they would have to be small and therefore faint. In order to try to discover whether there might be any, the camera used different exposures, some as long as 4.5 minutes. (For photographers, the effective shutter speed for the pictures of Vesta that reveal its surface features is 1/125 of a second.) The spacecraft pointed its camera around Vesta and acquired 72 images. Three hours later, it imaged the same locations, and then another nine hours after that, it repeated the sequence once again. The pictures are being scrutinized for points of light that shift position from one set of images to another, betraying the orbital motion of natural satellites of Vesta.

Although those results are not yet available, we now know with certainty that Vesta does have a moon. Its name is Dawn!

Dawn is 11,000 kilometers (6,800 miles) from Vesta, closer than many terrestrial satellites are to Earth. It is also 1.25 AU (187 million kilometers or 116 million miles) from Earth, or 470 times as far as the moon and 1.23 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 21 minutes to make the round trip.

› Read Marc Rayman’s previous Dawn Journals


Dawn Sets its Sights, and Lens, on Vesta

Friday, June 24th, 2011

By Marc Rayman

NASA’s Dawn spacecraft is less than one month away from getting into orbit around its first target, the giant asteroid Vesta. Each month, Marc Rayman, Dawn’s chief engineer, shares an update on the mission’s progress.

Image of the giant asteroid Vesta from Dawn's approach
NASA’s Dawn spacecraft obtained this image on its approach to the protoplanet Vesta, the second-most massive object in the main asteroid belt. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI. › See more images

Dear Dawnstinations,

Vesta beckons, and Dawn responds. Now more than halfway through its approach to Vesta, Dawn continues creeping up on the destination it has been pursuing since it began its interplanetary travels. The separation between them gradually shrinks as the probe’s ion thrusting brings its orbit around the sun into a closer and closer match with Vesta’s. At the same time, the giant protoplanet’s gravity tugs gently on the approaching ship, luring it into orbit.

Starting at the beginning of the approach phase on May 3, Dawn interrupted thrusting once a week to photograph Vesta against the background stars. These images help navigators determine exactly where the probe is relative to its target. This technique does not replace other means of navigation but rather supplements them. One of the principal methods of establishing the spacecraft’s trajectory relies on accurately timing how long it takes radio signals, traveling, as all readers know, at the universal limit of the speed of light, to make the round trip between Earth and Dawn. Another uses the Doppler shift of the radio waves, or the slight change in pitch caused by the craft’s motion. These sensitive measurements remain essential to navigating the faraway ship as it sails the interplanetary seas.

Despite the very slow approach, the distance is small enough now that observing Vesta weekly is no longer sufficient. To achieve the navigational accuracy required to reach the intended orbit in early August, last week the frequency of imaging was increased to twice per week. In each session, half of the pictures are taken with long exposures to ensure many stars are detectable, thus overexposing the much brighter disc of the nearby Vesta. The other half use short exposures to ensure that the rocky world shows up correctly so its precise location can be measured. The visible and infrared mapping spectrometer has been commanded to observe Vesta during three of these sessions, each time providing valuable information that will help scientists select instrument settings for when Dawn is close enough to begin its detailed scientific measurements.

In addition to the regular campaign of imaging for navigation, mission controllers have other plans in store for the approach phase that were laid out more than a year ago. Twice in the next few weeks, the spacecraft will watch Vesta throughout its complete 5.3-hour rotation on its axis, revealing exciting new perspectives on this uncharted body. The explorer also will search for moons of the alien world.

› Continue reading Marc Rayman’s June 23, 2011 Dawn Journal