Posts Tagged ‘space exploration’

Survey Orbit: A Truly Extaordinary View

Tuesday, June 3rd, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Dear Dawnosaurs,

Silently streaking through the main asteroid belt, emitting a blue-green beam of xenon ions, Dawn continues its ambitious interplanetary expedition. On behalf of creatures on distant Earth who seek not only knowledge and insight but also bold adventure, the spacecraft is heading toward its appointment with Ceres. In about 10 months, it will enter orbit around the ancient survivor from the dawn of the solar system, providing humankind with its first detailed view of a dwarf planet.

This month we continue with the preview of how Dawn will explore Ceres. In December we focused on the “approach phase,” and in January we described how the craft spirals gracefully into orbit with its extraordinary ion propulsion system. The plans for the first observational orbit (with a marvelously evocative name for a first examination of an uncharted world: RC3 — is that cool, or what?), at an altitude of 8,400 miles (13,500 kilometers), were presented in FebruaryLast month, we followed Dawn on its spiral descent from each orbital altitude to the next, with progressively lower orbits providing better views than the ones before. Now we can look ahead to the second orbital phase, survey orbit.

Survey orbit

This figure shows Dawn’s second observational orbit, “survey orbit,” at the same scale as the size of Ceres. At an altitude of 2,730 miles (4,400 kilometers), the spacecraft will make seven revolutions in about three weeks. Image credit: NASA/JPL-Caltech
› Larger image

In survey orbit, Dawn will make seven revolutions at an altitude of about 2,730 miles (4,400 kilometers). At that distance, each orbit will take three days and three hours. Mission planners chose an orbit period close to what they used for survey orbit at Vesta, allowing them to take advantage of many of the patterns in the complex choreography they had already developed. Dawn performed it so beautifully that it provides an excellent basis for the Ceres encore. Of course, there are some adjustments, mostly in the interest of husbanding precious hydrazine propellant in the wake of the loss of two of the spacecraft’s four reaction wheels. (Although such a loss could have dire consequences for some missions, the resourceful Dawn team has devised a plan that can achieve all of the original objectives regardless of the condition of the reaction wheels.)

We had a preview of survey orbit at Vesta four years ago, and we reviewed the wonderfully successful outcome in September 2011. When we develop the capability to travel backwards in time, we will insert a summary of what occurred in survey orbit at Ceres here: _______…… Well, nothing yet. So, let’s continue with the preview.

As in all phases at Ceres (and Vesta), Dawn follows what space trajectory experts (and geeks) call a polar orbit. The ship’s course will take it above the north pole, and then it will sail south over the side bathed in the light of the sun. After flying over the south pole, Dawn will head north. Although the surface beneath it will be dark, the spacecraft will be high enough that it will not enter the dwarf planet’s shadow. The distant sun will constantly illuminate the large solar arrays.

The leisurely pace in survey orbit allows the explorer to gather a wealth of data during the more than 37 hours on the day side. It will train its science camera and visible and infrared mapping spectrometer (VIR) on the surface lit by the sun. The camera will collect hundreds of images using all seven of its color filters. It will reveal details three times finer than it observed in RC3 orbit and 70 times sharper than the best we have from the Hubble Space Telescope. VIR will acquire millions of spectra to help scientists determine the minerals present as well as the temperature and other properties of the surface. While the sensors are pointed at the surface, the main antenna cannot simultaneously be aimed at Earth, so the robot will store its pictures and spectra.

One Cerean day, the time it takes Ceres to rotate once on its axis, is a little over nine hours. (For comparison, Earth, as some of its residents and visitors know, takes 24 hours. Jupiter turns in just under 10 hours, Vesta in five hours and 21 minutes, and your correspondent’s cat Regulus in about 0.5 seconds when chasing a laser spot.) So as Dawn travels from the north pole to the south pole, Ceres will spin underneath it four times. Dawn will be close enough that even the wide field of view of its camera won’t capture the entire disc below, from horizon to horizon, but over the course of the seven orbits, the probe will see most of the surface. As in developing the plan for Vesta, engineers (like certain murine rodents and male humans) are keenly aware that as careful, as thorough, and as diligent as they are, their schemes don’t always execute perfectly. In the unknown, forbidding depths of space with a complex campaign to carry out, glitches can occur and events can go awry. The plan is designed with the recognition that some observations will not be achieved, but those that are promise great rewards.

Artist's concept of Dawn orbiting Ceres

Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Image credit: NASA/JPL-Caltech

Most of the time, the spacecraft will gaze straight down at the alien terrain immediately beneath it. But on the first, second, and fourth passages over the day side of Ceres, it will spend some of the time looking at the limb against the blackness of space. Pictures with this perspective will not only be helpful for establishing the exact shape of the dwarf planet but they also will provide some very appealing views for eager sightseers on Earth.

In addition to using the camera and VIR, Dawn will measure space radiation with its gamma ray and neutron detector (GRaND). GRaND will still be too far from Ceres to sense the nuclear particles emanating from it, but recording the radiation environment will provide a valuable context for the sensitive measurements it will make at lower altitudes.

When Dawn’s orbit takes it over the dark side, it will turn away from the dwarf planet it is studying and toward the planet it left in 2007 where its human colleagues still reside. With its 5-foot (1.52-meter) main antenna, it will spend most of the day and a half radioing its precious findings across uncounted millions of miles (kilometers) of interplanetary space. (Well, you won’t have to count them, but we will.)

In addition to the instrument data it encodes, Dawn’s radio signal will allow scientists and engineers to measure how massive Ceres is. By observing the Doppler shift (the change in frequency caused by the spacecraft’s motion), they can determine how fast the ship moves in orbit. Timing how long the signals (traveling at the universal limit of the speed of light) take to make the round trip, navigators can calculate how far the probe is and hence where it is in its orbit. Combining these (and including other information as well) allows them to compute how strongly Ceres pulls on its orbital companion. The strength of its gravitational force reveals its heft.

By the end of survey orbit, Dawn will have given humankind a truly extraordinary view of a dwarf planet that has been cloaked in mystery despite more than 200 years of telescopic studies. As the exotic world of rock and ice begins to yield its secrets to the robotic ambassador from Earth, we will be transported there. We will behold new landscapes that will simultaneously quench our thirst for exploration and ignite our desire for even more. It is as humankind reaches ever farther into the universe that we demonstrate a part of what it means to be human, combining our burning need for greater understanding with our passion for adventure and our exceptional creativity, resourcefulness and tenacity. As we venture deeper into space, we discover much of what lies deep within ourselves.

Dawn is 7.2 million miles (12 million kilometers) from Ceres. It is also 1.87 AU (174 million miles, or 280 million kilometers) from Earth, or 695 times as far as the moon and 1.84 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 31 minutes to make the round trip.

› Continue reading Marc Rayman’s May 31, 2014, Dawn Journal


Riding the Spiral: Navigating a New World

Wednesday, April 30th, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft
Dawn will use its ion propulsion system to change orbits at Ceres, allowing it to observe the dwarf planet from different vantage points. Image credit: NASA/JPL-Caltech
› Larger image

Dear Compedawnt Readers,

Less than a year from its rendezvous with dwarf planet Ceres, Dawn is continuing to make excellent progress on its ambitious interplanetary adventure. The only vessel from Earth ever to take up residence in the main asteroid belt between Mars and Jupiter, the spacecraft grows more distant from Earth and from the sun as it gradually closes in on Ceres. Dawn devotes the majority of its time to thrusting with its remarkable ion propulsion system, reshaping its heliocentric path so that by the time it nears Ceres, the explorer and the alien world will be in essentially the same orbit around the sun.

In December, we saw what Dawn will do during the “approach phase”; to Ceres early in 2015, and in January, we reviewed the unique and graceful method of spiraling into orbit. We described in February the first orbit (with the incredibly cool name RC3) from which intensive scientific observations will be conducted, at an altitude of 8,400 miles (13,500 kilometers). But Dawn will take advantage of the extraordinary capability of ion propulsion to fly to three other orbital locations from which it will further scrutinize the mysterious world.

Let’s recall how the spacecraft will travel from one orbit to another. While some of these plans may sound like just neat ideas, they are much more than that; they have been proven with outstanding success. Dawn maneuvered extensively during its 14 months in orbit around Vesta. (One of the many discussions of that was in November 2011.) The seasoned space traveler and its veteran crew on distant Earth are looking forward to applying their expertise at Ceres.

As long-time readers of these logs know so well, the ion thrust is uniquely efficient but also extremely low. Ion propulsion provides acceleration with patience. Ultimately the patience pays off, enabling Dawn to accomplish feats far beyond what any other spacecraft has ever had the capability to do, including orbiting two extraterrestrial destinations. The gentle thrust, comparable to the weight of a single sheet of paper, means it takes many weeks to maneuver from one observational orbit to another. Of course, it is worthwhile to spend that much time, because each of the orbital phases is designed to provide an exciting trove of scientific data.

Those of you who have navigated around the solar system, as well as others who have contemplated the nature of orbits without having practical experience, recognize that the lower the orbital altitude, the faster the orbital motion. This important principle is a consequence of gravity’s strength increasing as the distance between the massive body and the orbiting object decreases. The speed has to be higher to balance the stronger gravitational pull. (For a reminder of some of the details, be sure to go here before you go out for your next orbital expedition.)

While Dawn slowly reduces its altitude under the faint pressure of its ion engine, it continues circling Ceres, orbiting in the behemoth’s gravitational grip. The effect of combining these motions is that the path from one altitude to another is a spiral. And as Dawn descends and zips around Ceres faster and faster, the spirals get tighter and tighter.

Illustration of Dawn's orbits from RC3 to survey orbit
RC3 to survey: Dawn will make five spiral loops during the month it will take to fly from its RC3 orbit (at 8,400 miles, or 13,500 kilometers) to survey orbit (at 2,700 miles, or 4,400 kilometers). Image credit: NASA/JPL-Caltech
› Larger image

The first coils around Ceres will be long and slow. After completing its investigations in RC3, the probe will spiral down to”survey orbit,”; about 2,700 miles (4,400 kilometers) above the surface. During that month-long descent, it will make only about five revolutions. After three weeks surveying Ceres from that new vantage point, Dawn will follow a tighter spiral down to the (misleadingly named) high altitude mapping orbit (HAMO) at 910 miles (1,470 kilometers). In the six-week trip to HAMO, the craft will wind around almost 30 times. It will devote two months to performing extensive observations in HAMO. And finally as 2015 draws to a close, it will fly an even more tightly wound course to reach its low altitude mapping orbit (LAMO) at 230 miles (375 kilometers), where it will collect data until the end of the mission. The ship will loop around 160 times during the two months to go from HAMO to LAMO. (We will preview the plans for survey orbit, HAMO and LAMO in May, July and August of this year, and if all goes well, we will describe the results in 2015 and 2016.)

Designing the spiral trajectories is a complex and sophisticated process. It is not sufficient simply to activate the thrust and expect to arrive at the desired destination, any more than it is sufficient to press the accelerator in your car and expect to reach your goal. You have to steer carefully (and if you don’t, please don’t drive near me), and so does Dawn. As the ship revolves around Ceres, it must constantly change the pointing of the blue-green beam of high velocity xenon ions to stay on precisely the desired winding route to the targeted orbit. The mission control team at JPL will program the ship to orient its thruster in just the right direction at the right time to propel itself on the intended spiraling course.

Illustration of Dawn's orbits from HAMO to LAMO
HAMO to LAMO: Dawn will complete 160 revolutions in two months as it follows a tight spiral from HAMO (at 910 miles, or 1,470 kilometers) to LAMO (at 230 miles, or 375 kilometers). Image credit: NASA/JPL-Caltech
› Larger image

Aiming a thruster in the direction needed to spiral around Ceres requires turning the entire spacecraft. Each thruster is mounted on its own gimbal with a limited range of motion. In normal operation, the gimbal is positioned so that the line of thrust goes through the center of the ship. When the gimbal is swiveled to another direction, the gentle force from the ion engine causes the ship to rotate slowly. This is similar to the use of an outboard motor on a boat. When it is aligned with the centerline of the boat, the craft travels straight ahead. When the motor is turned, it continues to propel the boat but also turns it. In essence, Dawn’s steering of its thrust is accomplished by pivoting the ion engine.

A crucial difference between the boat and our interplanetary ship is that with the former, the farther the motor is turned, the tighter the curving course. (Another difference is that the spacecraft wouldn’t float.) Dawn doesn’t have that liberty. For our craft, the gimballing of the thruster needs to be carefully coordinated with the orbital motion, as if the motorboat operator needed to compensate for a curving current. This has important implications at Ceres. Sophisticated as it is, Dawn knows its own location in orbit only by virtue of information mission controllers install onboard to predict where it will be at any time. That is based on their best computations of Ceres’ gravity, the planned operation of the ion propulsion system, and many other considerations, but it will never be perfectly accurate. Let’s take a look at two of the reasons.

Ceres, like Vesta, Earth, the moon, Mars, and other planets or planetary-type bodies, has a complex gravity field. The distribution of materials of different densities within the interior creates variations in the strength of the gravitational force, so Dawn will feel a slightly changing tug from Ceres as it travels in orbit. But there is a noteworthy difference between Ceres’ gravity field and the fields of those other worlds: Ceres’ field is unknown. We will have to measure it as we go. The subtle irregularities in gravity as Dawn descends will cause small deflections from the planned trajectory. Our ship will be traversing unknown, choppy waters.

Other phenomena will lead to slight discrepancies as well. The ion propulsion system will be responsible for changing the orbit, so even tiny deviations from the intended thrust eventually may build up to have a significant effect. This is no different from any realistic electrical or mechanical system, which is sure to have imperfections. If you planned a trip in which you would drive 60.0 miles (96.6 kilometers) at 60.0 mph (96.6 kilometers per hour), you could expect to arrive in exactly 60.0 minutes. (No surprises there, as it isn’t exactly rocket science.) But even if you maintained the speedometer as close to 60 as you could, it would not be accurate enough to indicate the true speed. If your actual speed averaged 60.4 mph (97.2 kilometers per hour), you would arrive 24 seconds early. Perhaps that difference wouldn’t matter to you (and if it did, you might consider replacing your car with a spaceship), but such minuscule errors, when compounded by Dawn’s repeated spirals around Ceres, would make a difference in achieving its carefully chosen orbit.

As a result of these and other effects, mission controllers will need to adjust the complex flight plan as Dawn travels from one observational orbit to another. So it will thrust for a few days and then stop to allow navigators to get a new fix on its position. When it points its main antenna to Earth, the Doppler shift of its radio signal will reveal its speed, and the time for radio signals (traveling, as all readers know so well, at the universal limit of the speed of light) to make the round trip will yield its distance. Combining those measurements with other data, mission controllers will update the plan for where to point the thruster at each instant during the next phase of the spiral, check it, double check it, and transmit it to the faraway robot, which will then put it into action. This intensive process will be repeated every few days as Dawn maneuvers to lower orbits.

The flight team succeeded brilliantly in performing this kind of work at Vesta, but they will encounter some differences at Ceres.

› Continue reading Marc Rayman’s April 30, 2014, Dawn Journal


So Close, Yet So Far Away: Dawn’s Trajectory Explained

Monday, March 31st, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft
Artist’s concept depicting the Dawn spacecraft thrusting with its ion propulsion system as it travels from Vesta (lower right) to Ceres (upper left). The galaxies in the background are part of the Virgo supercluster. Dawn, Vesta and Ceres are currently in the constellation Virgo from the perspective of viewers on Earth. Image credit: NASA/JPL
› Larger image

Dear Correspondawnts,

Powering its way through deep space, Dawn draws ever closer to dwarf planet Ceres. To reach its destination, the interplanetary spaceship gently reshapes its path around the sun with its extraordinary ion propulsion system. In about a year, the spacecraft will gracefully slip into orbit so it can begin to unveil the nature of the mysterious world of rock and ice, an intriguing protoplanetary remnant from the dawn of the solar system.

Even as Dawn ascends the solar system hill, climbing farther and farther from the sun, penetrating deeper into the main asteroid belt between Mars and Jupiter, its distance to Earth is shrinking. This behavior may be perplexing for readers with a geocentric bias, but to understand it, we can take a broader perspective.

The sun is the conductor of the solar system symphony. Its gravity dictates the movements of everything that orbits it: Earth as well as the other planets, Vesta, Ceres, and myriad smaller objects, including asteroids and Dawn. (Actually, the gravity of every single body affects how all of the others move, but with more than 99 percent of the entire solar system’s mass concentrated in the gargantuan sun, it dominates the gravitational landscape.)

Whether it is for a planet or Dawn orbiting the sun, a spacecraft or moon orbiting a planet, the sun or other stars orbiting the Milky Way (the Milky Way galaxy, that is, not your correspondent’s cat Milky Way), or the Milky Way galaxy orbiting the Virgo supercluster of galaxies (home to an appreciable fraction of our readership), any orbit is the perfect balance between the inward tug of gravity and the inexorable tendency of objects to travel in a straight line. If you attach a weight to a string and swing it around in a circle, the force you use to pull on the string mimics the gravitational force the sun exerts on the bodies that orbit it. The effort you expend in keeping the weight circling serves constantly to redirect its course, forcing it to curve; if you release the string, the weight’s natural motion would take it away in a straight line (we are ignoring here the effect of Earth’s gravity on the weight).

The force of gravity dwindles as the distance increases, so the sun pulls harder on a nearby body than on a farther one. Therefore, to remain in orbit, to balance the relentless gravitational lure, the closer object must travel at higher speed, resisting the stronger attraction. The same effect applies at Earth. Satellites that orbit very close (including, for example, the International Space Station, 250 miles, or 400 kilometers, above the surface) must streak around the planet at about 17,000 mph (7.6 kilometers per second) to avoid being drawn down. The moon, orbiting almost a thousand times farther above, needs only to travel at less than 2300 mph (about 1.0 kilometers per second) to balance Earth’s weaker hold at its remote location.

For that reason, Mercury zips around the sun faster than any of the other planets. Mars travels more slowly than Earth, and the still more distant residents of the asteroid belt, whether natural (all of them but one) or a product of human ingenuity (one: Dawn), proceed at an even more leisurely pace. As Earth makes its relatively rapid annual trip around the sun, the distance to the spacecraft that left it behind in 2007 alternately shrinks and grows.

We can visualize this with one of the popular models of clocks available in the Dawn gift shop on your planet, in which the hour hand is longer than the minute hand. Imagine the sun as being at the center of the clock. The tip of the short minute hand represents Earth, and the end of the hour hand represents Dawn. Some of the time (such as between noon and shortly after 12:30), the distance between the ends of the hands increases. Then the situation reverses as the faster minute hand begins moving closer and closer to the hour hand as the time approaches about 1:05.

The Dawn spacecraft's trajectory
This graphic shows the Dawn spacecraft’s interplanetary trajectory from launch through its arrival at Ceres next year. The positions of the spacecraft and Earth are shown on April 10, 2014, when their independent orbits bring them relatively close together. Image credit: NASA/JPL-Caltech

› Larger image

Earth and Dawn are exhibiting the same repetitive behavior. Of course, their relative motion is more complicated than that of the clock hands, because Dawn’s ion thrusting is constantly changing its solar orbit (and so the distance and speed at which it loops around the sun), but the principle is the same. They have been drawing closer since August 2013. Earth, coming from behind, is now about to pass Dawn and move ahead. The stalwart probe will not even take note however, as its sights remain firmly set on an unexplored alien world.

On April 10, the separation will be 1.56 AU (1.56 times the average distance between Earth and the sun, which means 145 million miles, or 233 million kilometers), an almost inconceivably large distance (well in excess of half a million times farther than the International Space Station, which orbits Earth, not the sun) but less than it has been since September 2011. (The skeptical reader may verify this by reviewing the concluding paragraph of each log in the intervening months.) Enjoy the upcoming propinquity while you can! As the ship sails outward from the sun toward Ceres, it will never again be this close to its planet of origin. The next time Earth, taking an inside track, overtakes it, in July 2015 (by which time Dawn will be orbiting Ceres), they will only come within 1.94 AU (180 million miles, or 290 million kilometers) of each other.

By the way, Vesta, the endlessly fascinating protoplanet Dawn unveiled in 2011-2012, will be at its smallest separation from Earth of 1.23 AU (114 million miles, or 183 million km) on April 18. Ceres, still awaiting a visitor from Earth, despite having first been glimpsed from there in 1801, will attain its minimum distance on April 15, when it will be 1.64 AU (153 million miles, or 246 million km) away. It should not be a surprise that Dawn’s distance is intermediate; it is between them as it journeys from one to the other.

Finder chart showing the locations of Vesta and Ceres
This finder chart can help you locate Vesta and Ceres (and even Dawn, although it is too small to see) in the constellation Virgo. Click it for a larger version. Image credit: Sky & Telescope Magazine
› Larger image

Not only is each one nearly at its shortest geocentric range, but from Earth’s point of view, they all appear to be near each other in the constellation Virgo. In fact, they also look close to Mars, so you can locate these exotic worlds (and even the undetectably small spacecraft) in the evening sky by using the salient red planet as a signpost. In July, the coincidental celestial alignment will make Vesta and Ceres appear to be separated by only one third the diameter of the full Moon, although these behemoths of the asteroid belt will be 0.57 AU (52 million miles, or 85 million kilometers) from each other.

We mentioned above that by constantly modifying its orbit under the persistent pressure of its ion engine, Dawn complicates the simple clock-like behavior of its motion relative to Earth. On Halloween 2012, we were treated to the startling fact that to rendezvous with Ceres, at a greater distance from the sun, Dawn had to come in toward the sun for a portion of its journey; quite a trick! In that memorable log (which is here, for those readers who didn’t find every detail to be so memorable), we observed that it would not be until May 2014 that Dawn would be as far from the sun as it was on Nov. 1, 2012. Sure enough, having faithfully performed all of the complex and intricate choreography since then, it will fly to more than 2.57 AU from the solar system’s star in May, and it will continue heading outward.

With the sun behind it and without regard to where Earth or most other residents of the solar system are in their orbits, Dawn rises to ever greater heights on its extraordinary expedition. Distant though it is, the celestial ambassador is propelled by the burning passion for knowledge, the powerful yearning to reach beyond the horizon, and the noble spirit of adventure of the inhabitants of faraway Earth. The journey ahead presents many unknowns, promising both great challenges and great rewards. That, after all, is the reason for undertaking it, for such voyages enrich the lives of all who share in the grand quest to understand more about the cosmos and our humble place in it.

Dawn is 11 million miles (18 million kilometers) from Ceres. It is also 1.57 AU (146 million miles, or 235 million kilometers) from Earth, or 625 times as far as the moon and 1.57 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 26 minutes to make the round trip.

› Read more from Marc Rayman’s Dawn Journal


It’s All About Grace Under Pressure for Dawn’s Drop Into Orbit

Friday, January 31st, 2014

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Artist's concept of the Dawn spacecraft at the dwarf planet Ceres
Artist’s concept of NASA’s Dawn spacecraft thrusting with its ion propulsion system as it approaches the dwarf planet Ceres. Image credit: NASA/JPL-Caltech

Dear Rendawnvous,

Dawn is continuing its trek through the main asteroid belt between Mars and Jupiter. Leaving behind a blue-green wake of xenon from its ion propulsion system, its sights are set on dwarf planet Ceres ahead. The journey has been long, but the veteran space traveler (and its support team on distant Earth) is making good progress for its rendezvous early next year.

Last month, we had a preview of many of the activities the probe will execute during the three months that culminate in settling into the first observational orbit at Ceres in April 2015. At that orbit, about 8,400 miles (13,500 kilometers) above the alien landscapes of rock and ice, Dawn will begin its intensive investigations. Nevertheless, even during the “approach phase,” it will often observe Ceres with its camera and one of its spectrometers to gain a better fix on its trajectory and to perform some preliminary characterizations of the mysterious world prior to initiating its in-depth studies. The discussion in December did not cover the principal activity, however, which is one very familiar not only to the spacecraft but also to readers of these logs. The majority of the time in the approach phase will be devoted to continuing the ion-powered flight. We described this before Vesta, but for those few readers who don’t have perfect recall (we know who you are), let’s take another look at how this remarkable technology is used to deliver the adventurer to the desired orbit around Ceres.

Thrusting is not necessary for a spacecraft to remain in orbit, just as the moon remains in orbit around Earth and Earth and other planets remain in orbit around the sun without the benefit of propulsion. All but a very few spacecraft spend most of their time in space coasting, following the same orbit over and over unless redirected by a gravitational encounter with another body. In contrast, with its extraordinarily efficient ion propulsion system, Dawn’s near-continuous thrusting gradually changes its orbit. Thrusting since December 2007 has propelled Dawn from the orbit in which the Delta rocket deposited it after launch to orbits of still greater distance from the sun. The flight profile was carefully designed to send the craft by Mars in February 2009, so our celestial explorer could appropriate some of the planet’s orbital energy for the journey to the more distant asteroid belt, of which it is now a permanent resident. In exchange for Mars raising Dawn’s heliocentric orbit, Dawn lowered Mars’s orbit, ensuring the solar system’s energy account remained balanced.

While spacecraft have flown past a few asteroids in the main belt (although none as large as the gargantuan Vesta or Ceres, the two most massive objects in the belt), no prior mission has ever attempted to orbit one, much less two. For that matter, this is the first mission ever undertaken to orbit any two extraterrestrial destinations. Dawn’s exclusive assignment would be quite impossible without its uniquely capable ion propulsion system. But with its light touch on the accelerator, taking nearly four years to travel from Earth past Mars to Vesta, and more than two and a half years from Vesta to Ceres, how will it enter orbit around Ceres? As we review this topic in preparation for Ceres, bear in mind that this is more than just a cool concept or neat notion. This is real. The remarkable adventurer actually accomplished the extraordinary feats at Vesta of getting into and out of orbit using the delicate thrust of its ion engines.

Whether conventional spacecraft propulsion or ion propulsion is employed, entering orbit requires accompanying the destination on its own orbit around the sun. This intriguing challenge was addressed in part in February 2007. In February 2013, we considered another aspect of what is involved in climbing the solar system hill, with the sun at the bottom, Earth partway up, and the asteroid belt even higher. We saw that Dawn needs to ascend that hill, but it is not sufficient simply to reach the elevation of each target nor even to travel at the same speed as each target; the explorer also needs to travel in the same direction. Probes that leave Earth to orbit other solar system bodies traverse outward from (or inward toward) the sun, but then need to turn in order to move along with the body they will orbit, and that is difficult.

Those of you who have traveled around the solar system before are familiar with the routine of dropping into orbit. The spacecraft approaches its destination at very high velocity and fires its powerful engine for some minutes or perhaps even about an hour, by the end of which it is traveling slowly enough that the planet’s gravity can hold it in orbit and carry it around the sun. These exciting events may range from around 1,300 to 3,400 mph (0.6 to 1.5 kilometers per second). With ten thousand times less thrust than a typical propulsion system on an interplanetary spacecraft, Dawn could never accomplish such a rapid maneuver. As it turns out, however, it doesn’t have to.

Dawn’s method of getting into orbit is quite different, and the key is expressed in an attribute of ion propulsion that has been referred to 63 times (trust or verify; it’s your choice) before in these logs: it is gentle. (This example shows just how gentle the acceleration is.) With the gradual trajectory modifications inherent in ion propulsion, sharp changes in direction and speed are replaced by smooth, gentle curves. The thrust profiles for Dawn’s long interplanetary flights are devoted to the gradual reshaping of its orbit around the sun so that by the time it is in the vicinity of its target, its orbit is nearly the same as that of the target. Rather than hurtling toward Vesta or Ceres, Dawn approaches with grace and elegance. Only a small trajectory adjustment is needed to let its new partner’s gravity capture it, so even that gentle ion thrust will be quite sufficient to let the craft slip into orbit. With only a nudge, it transitions from its large, slow spiral away from the sun to an inward spiral centered around its new gravitational master.

illustration of Dawn's orbit
This graphic shows the planned trek of NASA’s Dawn spacecraft from its launch in 2007 through its arrival at the dwarf planet Ceres in early 2015. Note how Dawn spirals outward to Vesta and then still more to Ceres. Image credit: NASA/JPL-Caltech

To get into orbit, a spacecraft has to match speed, direction and location with its target. A mission with conventional propulsion first gets to the location and then, using the planet’s gravity and its own fuel-guzzling propulsion system, very rapidly achieves the required speed and direction. By spiraling outward from the sun, first to the orbit of Vesta and now to Ceres, Dawn works on its speed, direction and location all at the same time, so they all gradually reach the needed values at just the right time.

To illustrate this facet of the difference between how the different systems are applied to arrive in orbit, let’s imagine you want to drive your car next to another traveling west at 60 mph (100 kilometers per hour). The analogy with the conventional technology would be similar to speeding north toward an intersection where you know the other car will be. You arrive there at the same time and then execute a screeching, whiplash-inducing left turn at the last moment using the brakes, steering wheel, accelerator and adrenaline. When you drive an ion propelled car (with 10 times higher fuel efficiency), you take an entirely different path from the start, one more like a long, curving entrance ramp to a highway. As you enter the ramp, you slowly (perhaps even gently) build speed. You approach the highway gradually, and by the time you have reached the far end of the ramp, your car is traveling at the same speed and in the same direction as the other car. Of course, to ensure you are there when the other car is, the timing is very different from the first method, but the sophisticated techniques of orbital navigation are up to the task.

› Continue reading Marc Rayman’s January 2014 Dawn Journal


NASA’s Dawn Plans for Planetary Shores Ahead

Tuesday, December 31st, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

NASA Dawn spacecraft between its targets, Vesta and Ceres
Artist’s concept of NASA’s Dawn spacecraft between the giant asteroid Vesta and the dwarf planet Ceres. Image credit: NASA/JPL-Caltech

Dear Clairvoydawnts,

Now more than halfway through its journey from protoplanet Vesta to dwarf planet Ceres, Dawn is continuing to use its advanced ion propulsion system to reshape its orbit around the sun. Now that the ship is closer to the uncharted shores ahead than the lands it unveiled astern, we will begin looking at the plans for exploring another alien world. In seven logs from now through August, we will discuss how the veteran adventurer will accomplish its exciting mission at Ceres. By the time it arrives early in 2015 at the largest object between Mars and Jupiter, readers will be ready to share not only in the drama of discovery but also in the thrill of an ambitious undertaking far, far from Earth.

Mission planners separate this deep-space expedition into phases. Following the “launch phase” was the 80-day “checkout phase”. The “interplanetary cruise phase” is the longest. It began on December 17, 2007, and continued to the “Vesta phase,” which extended from May 3, 2011, to Sept. 4, 2012. We are back in the interplanetary cruise phase again and will be until the “Ceres phase” begins in 2015. (Other phases may occur simultaneously with those phases, such as the “oh man, this is so cool phase,” the “we should devise a clever name for this phase phase,” and the “lunch phase.”) Because the tasks at Vesta and Ceres are so complex and diverse, they are further divided into sub-phases. The phases at Ceres will be very similar to those at Vesta, even though the two bodies are entirely different.

In this log, we will describe the Ceres “approach phase.” The objectives of approach are to get the explorer into orbit and to attain a preliminary look at the mysterious orb, both to satisfy our eagerness for a glimpse of a new and exotic world and to obtain data that will be helpful in refining details of the subsequent in-depth investigations. The phase will start in January 2015 when Dawn is about 400,000 miles (640,000 kilometers) from Ceres. It will conclude in April when the spacecraft has completed the ion thrusting necessary to maneuver into the first orbit from which it will conduct intensive observations, at an altitude of about 8,400 miles (13,500 kilometers). For a reason to be revealed below, that orbit is known by the catchy cognomen RC3.

(Previews for the Vesta approach phase were presented in March 2010 and May 2011, and the accounts of its actual execution are in logs from June, July, and August 2011. Future space historians should note that the differing phase boundaries at Vesta are no more than a matter of semantics. At Vesta, RC3 was described as being part of the approach phase. For Ceres, RC3 is its own distinct phase. The reasons for the difference in terminology are not only unimportant, they aren’t even interesting.)

The tremendous maneuverability provided by Dawn’s uniquely capable ion propulsion system means that the exact dates for events in the approach phase likely will change between now and then. So for those of you in 2015 following a link back to this log to see what the approach plan has been, we offer both the reminder that the estimated dates here might shift by a week or so and a welcome as you visit us here in the past. We look forward to meeting you (or even being you) when we arrive in the future.

Most of the approach phase will be devoted to ion thrusting, making the final adjustments to Dawn’s orbit around the sun so that Ceres’s gravity will gently take hold of the emissary from distant Earth. Next month we will explain more about the unusual nature of the gradual entry into orbit, which will occur on about March 25, 2015.

Starting in early February 2015, Dawn will suspend thrusting occasionally to point its camera at Ceres. The first time will be on Feb. 2, when they are 260,000 miles (420,000 kilometers) apart. To the camera’s eye, designed principally for mapping from a close orbit and not for long-range observations, Ceres will appear quite small, only about 24 pixels across. But these pictures of a fuzzy little patch will be invaluable for our celestial navigators. Such “optical navigation” images will show the location of Ceres with respect to background stars, thereby helping to pin down where it and the approaching robot are relative to each other. This provides a powerful enhancement to the navigation, which generally relies on radio signals exchanged between Dawn and Earth. Each of the 10 times Dawn observes Ceres during the approach phase will help navigators refine the probe’s course, so they can update the ion thrust profile to pilot the ship smoothly to its intended orbit.

Whenever the spacecraft stops to acquire images with the camera, it also will train the visible and infrared mapping spectrometer on Ceres. These early measurements will be helpful for finalizing the instrument parameters to be used for the extensive observations at closer range in subsequent mission phases.

Dawn obtained images more often during the Vesta approach phase than it will on approach to Ceres, and the reason is simple. It has lost two of its four reaction wheels, devices used to help turn or stabilize the craft in the zero-gravity, frictionless conditions of spaceflight. (In full disclosure, the units aren’t actually lost. We know precisely where they are. But given that they stopped functioning, they might as well be elsewhere in the universe; they don’t do Dawn any good.) Dawn’s hominin colleagues at JPL, along with excellent support from Orbital Sciences Corporation, have applied their remarkable creativity, tenacity, and technical acumen to devise a plan that should allow all the original objectives of exploring Ceres to be met regardless of the health of the wheels. One of the many methods that contributed to this surprising resilience was a substantial reduction in the number of turns during all remaining phases of the mission, thus conserving the precious hydrazine propellant used by the small jets of the reaction control system.

When Dawn next peers at Ceres, nine days after the first time, it will be around 180,000 miles (290,000 kilometers) away, and the pictures will be marginally better than the sharpest views ever captured by the Hubble Space Telescope. By the third optical navigation session, on Feb. 21, Ceres will show noticeably more detail.

At the end of February, Dawn will take images and spectra throughout a complete Ceres rotation of just over nine hours, or one Cerean day. During that period, while about 100,000 miles (160,000 kilometers) distant, Dawn’s position will not change significantly, so it will be almost as if the spacecraft hovers in place as the dwarf planet pirouettes beneath its watchful eye. Dawn will see most of the surface with a resolution twice as good as what has been achieved with Hubble. (At that point in the curving approach trajectory, the probe will be south of Ceres’s equator, so it will not be able to see the high northern latitudes.) This first “rotation characterization,” or RC1, not only provides the first (near-complete) look at the surface, but it may also suggest to insightful readers what will occur during the RC3 orbit phase.

There will be six more imaging sessions before the end of the approach phase, with Ceres growing larger in the camera’s view each time. When the second complete rotation characterization, RC2, is conducted on March 16, the resolution will be four times better than Hubble’s pictures. The last photos, to be collected on March 24, will reveal features seven times smaller than could be discerned with the powerful space observatory.

The approach imaging sessions will be used to accomplish even more than navigating, providing initial characterizations of the mysterious world, and whetting our appetites for more. Six of the opportunities also will include searches for moons of Ceres. Astronomers have not found moons of this dwarf planet in previous attempts, but Dawn’s unique vantage point would allow it to discover smaller ones than would have been detectable in previous attempts.

When the approach phase ends, Dawn will be circling its new home, held in orbit by the massive body’s gravitational grip and ready to begin more detailed studies. By then, however, the pictures and other data it will have returned will already have taught Earthlings a great deal about that enigmatic place. Ceres has been observed from Earth for more than two centuries, having first been spotted on January 1, 1801, but it has never appeared as much more than an indistinct blob amidst the stars. Soon a probe dispatched by the insatiably curious creatures on that faraway planet will take up residence there to uncover some of the secrets it has held since the dawn of the solar system. We don’t have long to wait!

Dawn is 20 million miles (32 million kilometers) from Vesta and 19 million miles (31 million kilometers) from Ceres. It is also 2.42 AU (225 million miles, or 362 million kilometers) from Earth, or 1,015 times as far as the moon and 2.46 times as far as the sun today. Radio signals, traveling at the universal limit of the speed of light, take 40 minutes to make the round trip.

› Read more entries from Marc Rayman’s Dawn Journal


Slice of History: Mariner 4 Television Experiment Team

Tuesday, September 3rd, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Mariner 4 Television Experiment Team
Mariner 4 Television Experiment Team — Photograph number P-5005B

Because the data return rate from Mariner 4 was very low, the Mariner 4 Television Experiment Team spent hours waiting for each new image to appear. In this photo they are waiting for the first picture from Mars. Mariner eventually returned 22 images. From left to right: Robert Nathan (NASA’s Jet Propulsion Laboratory), Bruce Murray (associate professor of planetary science), Robert Sharp (Caltech), Robert Leighton (principal investigator), and Clayton La Baw (JPL).

Murray had been a member of the Caltech faculty for about five years when this photo was taken in July 1965. He went on to replace William Pickering as Director of JPL in 1976, retired from that position in 1982, and returned to Caltech.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


Earth and Dawn on Opposite Sides Now

Friday, August 30th, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

The Dawn spacecraft's orbits
In this graphic of Dawn’s interplanetary trajectory, the thin solid lines represent the orbits of Earth, Mars, Vesta and Ceres. After leaving Vesta, Dawn’s orbit temporarily takes it closer to the Sun than Vesta, although in this view they are so close together the difference is not visible because of the thickness of the lines. Dawn will remain in orbit around Ceres at the end of its primary mission. Image credit: NASA/JPL-Caltech

Dear Antecedawnts,

Traveling confidently and alone, Dawn continues to make its way through the silent depths of the main asteroid belt. The only spacecraft ever to have orbited a resident of the vast territory between Mars and Jupiter, Dawn conducted a spectacular exploration of gigantic Vesta, revealing a complex place that resembles the terrestrial planets more than typical asteroids. Now the interplanetary adventurer is on its long journey to the uncharted dwarf planet Ceres, by far the largest of all asteroids (975 kilometers, or more than 600 miles, in equatorial diameter). In 2015, the mysterious world of rock and ice will begin to give up its ancient secrets to the immigrant from distant Earth.

Earth, Vesta, Dawn, and Ceres are following their own separate paths around the sun. The spacecraft is patiently reshaping its orbit, using its uniquely efficient ion propulsion system to accomplish a deep-space expedition that would be impossible with conventional propulsion.

As we have seen in many previous logs (including, for example, here), the higher an object’s orbit, the slower it needs to move in order to balance the gravitational pull, which diminishes with distance. Blistering Mercury orbits the sun faster than Venus, Venus goes faster than Earth, Earth goes faster than Mars, and Mars goes faster than the residents of the asteroid belt and the cold planets of the outer solar system. In the same way, satellites that orbit close to Earth, including the International Space Station, move faster than those at greater altitudes, and the moon travels even more slowly in its very high orbit.

Dawn is now a permanent inhabitant of the main asteroid belt. Therefore, the massive sun, the gravitational master of the solar system, has a weaker grip on it than on Earth. So as Dawn maneuvers from Vesta to Ceres, Earth revolves more rapidly around the sun. This month, their independent motions have taken them to their greatest separation of the year, as they are on opposite sides of the sun. How truly remarkable that humankind can accomplish such a feat!

On August 4, the planet and its robotic ambassador to the cosmos were an extraordinary 3.47 AU (519 million kilometers, or 322 million miles) apart. (To recapture the feeling of your position in the universe then, it may be helpful to know that the maximum range was attained at 4:16 a.m. PDT.) From the perspective of terrestrial observers, had they possessed the superhuman (and even supertelescopic) vision needed to descry the tiny ship far beyond the blindingly bright star, Dawn would have appeared to be very close to the sun but not directly behind it. To rendezvous with Vesta and then with Ceres, the spacecraft has tilted the plane of its solar orbit. Some of the time it is north of Earth’s orbital plane, sometimes it is south. August 4 was during the northern segment, so Dawn would have been a little north of the sun.

It’s time to refer to one of those novel clocks available in the Dawn gift shop on your planet (although if you already have such a clock, it probably doesn’t tell you that it’s time — we stand by our policy of full refunds within 24 hours, as measured by our Dawn clocks). With the sun at the center of the clock, Earth’s motion would be like that of a short minute hand. Dawn, both farther from the sun and moving more slowly, would be following the path of a longer hour hand. If we ignore the effect of the ion thrust, which is constantly changing the orbit, and the slight misalignment of the hour hand representing Dawn’s being in a different plane, the conditions on August 4 were like those at 6:00.

As time progresses and Earth continues circling the sun, it will come closer to Dawn until April 2014 (like 12:00). Even then, however, they will be over 1.55 AU (232 million kilometers, or 144 million miles) apart, and they will never be that close again. The spacecraft will continue climbing higher and higher from the sun toward Ceres, so by the time Earth loops around once more, Dawn will be even farther from it. In the meantime, when next the arrangement is like 6:00, in December 2014, the separation will be more than 3.78 AU (565 million kilometers, or 351 million miles), even greater than the remarkable range a few weeks ago.

› Continue reading Marc Rayman’s Dawn Journal


Dawn’s Journey: A Power Trip

Tuesday, July 30th, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

Dawn's solar arrays are folded to fit inside the nose cone in preparation for launch
The Dawn spacecraft’s solar array wings — pictured here in a folded position in preparation for launch — span 19.7 meters (nearly 65 feet) and are designed to keep the spacecraft powered even as it ventures further from the sun into the remote asteroid belt. Image credit: NASA/JPL-Caltech

Dear Megalodawniacs,

Powering its way through the main asteroid belt between Mars and Jupiter, Dawn continues on course and on schedule for its 2015 appointment with dwarf planet Ceres. After spending more than a year orbiting and scrutinizing Vesta, the second most massive object in the asteroid belt, the robotic explorer has its sights set on the largest object between the sun and Neptune that a spacecraft has not yet visited. This exotic expedition to unveil mysterious alien worlds would be impossible without the probe’s ion propulsion system.

Ion propulsion is not a source of power for this interplanetary spaceship. Rather, the craft needs a great deal of power to operate its ion propulsion system and all other systems. It needs so much that…

We crave power!!

The ion propulsion system is power-hungry. The process of ionizing xenon and then accelerating it to high velocity consumes a significant amount of electrical power, all of which is provided by the spacecraft’s huge solar arrays. With these two wings and its ion tail, Dawn resembles a celestial dragonfly. But this extraterrestrial odonate is a giant, with a wingspan of 19.7 meters (nearly 65 feet). When it was launched in 2007, this was the greatest tip-to-tip length of any probe NASA had ever dispatched on an interplanetary voyage. (Some such spacecraft have had flexible wire-like antennas that reach to greater lengths.) The large area of solar cells is needed to capture feeble sunlight in the remote asteroid belt to meet all of the electrical needs. Each solar array wing is the width of a singles tennis court, and the entire structure would extend from a pitcher’s mound to home plate on a professional baseball field, although Dawn is engaged in activities considerably more inspiring and rewarding than competitive sports.

To sail the ship to its intended destination, navigators plot a complex course on the solar system sea. The thrust delivered by the ion engine depends on the power level; higher power translates into higher (but still ever so gentle) thrust. The farther Dawn is from the luminous sun, the less power is available, so the thrust is lower. Therefore, to keep it on its itinerary, mission planners need to know the thrust at all times in the future. It would not be a recipe for success to propel the spacecraft to a position in space from which it could not achieve enough thrust to accomplish the rest of the carefully designed journey to Ceres.

To formulate the flight plan then requires knowing how much power will be available even as the probe ventures farther from the sun. Engineers make mathematical predictions of the power the solar arrays will generate, but these calculations are surprisingly difficult. Well, perhaps some readers would not be surprised, but it is more complicated than simply reducing the power in proportion to the intensity of the sunlight. As one example, at greater distances from the sun, the temperature of the arrays in the cold depths of space would be even lower, and the efficiency of the solar cells depends on their temperature. In 2008, the operations team devised and implemented a method to refine their estimates of the solar array performance, and that work enabled the deep-space traveler to arrive at Vesta earlier and depart later. Now they have developed a related but superior technique, which the faithful spacecraft executed flawlessly on June 24.

The only way to measure the power generation capability of the arrays is to draw power from them. With the ion thrust off, even with all other systems turned on, the spacecraft cannot consume as much power as the arrays can provide, so no meaningful measurement would be possible.

In typical operations, Dawn keeps its solar arrays pointed directly at the sun. For this special calibration, it rotated them so the incident sunlight came at a different angle. This reduced the total amount of light falling on the cells, effectively creating the conditions the spacecraft will experience when it has receded from the sun. As the angle increased, corresponding to greater distances from the brilliant star, the arrays produced less power, so the ion engine had to be throttled down. (The engines can be operated at 112 different throttle levels, each with a different input power and different thrust level.)

Engineers estimated what the maximum throttle level would be at each of the angles as well as the total power all other systems would consume during the test and then programmed it so the ion propulsion system would throttle down appropriately as the solar array angle increased. Of course, they could not know exactly what the highest throttle level at each angle would be; if they did, then they would already know the solar array characteristics well enough that the calibration would be unnecessary. Fortunately, however, they did not need to determine the perfect levels in advance. The sophisticated robot is smart enough to reduce by a few throttle levels if it detects that all systems combined are drawing more power than the solar arrays generate.

Under normal circumstances, the spacecraft doesn’t need to adjust the ion throttle level on its own. Engineers know the solar array performance well enough that they can predict the correct setting with high accuracy for a typical four-week sequence of commands stored onboard. It is only for the much greater distances from the sun in the years ahead that the uncertainty becomes important. In addition, during regular operations, if the spacecraft temporarily needs to use more heaters than usual (more than 140 heaters are distributed around the ship, each turning on and off as needed), thereby increasing the power demand, its battery can make up for the difference. That avoids unnecessary throttle changes.

› Continue reading Marc Rayman’s Dawn Journal


Slice of History: Infrared Ear Thermometer

Wednesday, May 8th, 2013

By Julie Cooper

Each month in “Slice of History” we feature a historical photo from the JPL Archives. See more historical photos and explore the JPL Archives at https://beacon.jpl.nasa.gov/.

Infrared ear thermometer
Infrared Ear Thermometer — Photograph Number JPL-17459Ac

In 1991, Diatek Corporation of San Diego put a new infrared thermometer - Model 7000 - on the market. Early electronic thermometers had been used by some hospitals and doctors’ offices for several years before that time, but this Diatek model was a pioneering effort to modify space-based infrared sensors for a medical infrared thermometer. The underlying technology was developed by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., for missions including the Infrared Astronomical Satellite, or IRAS. IRAS measured the temperature of stars and planets by reading the infrared radiation emitted from them, while the thermometer almost instantly determined body temperature by measuring the energy emitted from the eardrum - quite an advancement in medical technology. Diatek was part of the JPL Technology Affiliates Program, or TAP, in the late 1980s and received help from JPL personnel in adapting infrared sensor technology to this new product.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.


To Be in the Right Place, Dawn Catches Up With Time

Wednesday, May 1st, 2013

By Marc Rayman
As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

The Dawn spacecraft's orbits
In this graphic of Dawn’s interplanetary trajectory, the thin solid lines represent the orbits of Earth, Mars, Vesta and Ceres. After leaving Vesta, Dawn’s orbit temporarily takes it closer to the Sun than Vesta, although in this view they are so close together the difference is not visible because of the thickness of the lines. Dawn will remain in orbit around Ceres at the end of its primary mission. Image credit: NASA/JPL-Caltech

Dear Dawnscerning Readers,

Nearly three times as far from Earth as the sun is, the Dawn spacecraft is making very good progress on its ambitious trek from Vesta to Ceres. After a spectacular adventure at the second most massive resident of the main asteroid belt between Mars and Jupiter, Dawn used its extraordinary ion propulsion system to leave it behind and undertake the long journey to a dwarf planet.

Ceres orbits the sun outside Vesta’s orbit, yet Dawn is now closer to the sun than both of these alien worlds. How can it be that as the probe climbs from one to the other, it seems to be falling inward? Perhaps the answer lies in the text below; let’s venture on and find out!

On Halloween we discussed why Dawn is heading in toward the sun, but this question is different. Vesta also is getting closer to the sun, but what’s of interest now is that Dawn, despite its more remote destination, has been approaching the sun more quickly. That earlier log stands out as the best one ever written on this exciting mission in the entire history of October 2012, but if you prefer not to visit it now, we can summarize here the explanation for the spacecraft moving toward the sun. Like all members of the sun’s entourage, Vesta and Ceres follow elliptical orbits, their distances from the master of the solar system growing and shrinking as they loop around it. Even Earth’s orbit, although nearly round, certainly is not perfectly circular. Our planet is a little closer to the sun in the northern hemisphere winter (southern hemisphere summer) than it is in the summer (southern hemisphere winter). Dawn’s orbit is elliptical as well, so it naturally moves nearer to the sun sometimes, and now is such a time. But that does not address why it is currently closer to the sun than Vesta, even though it is seeking out the more distant Ceres.

Because it will orbit Ceres, and not simply fly past it (which would be significantly easier but less valuable), Dawn must make its own orbit around the sun be identical to its target’s. But that is not the entire story. After spending 14 months orbiting Vesta, Dawn’s challenge is more than to change the shape of its orbit to match Ceres’s. The spacecraft also must be at the same place in Ceres’s heliocentric orbit that Ceres itself is.

It would not be very rewarding to follow the same looping path around the sun but always be somewhere else on that path. You can visualize this if you have one of the many defective — er, exotic clocks from the Dawn gift shop on your planet that have two minute hands. If the clock starts with one hand pointed at 12 and another pointed at 1, they will take the same repetitive route, but neither hand will ever catch up with the other. For Dawn’s goal of exploring Ceres, this would not prove satisfying. Therefore, part of the objective of the ion thrusting is to ensure the spacecraft arrives not only on the same heliocentric course as Ceres but is there when Ceres is also.

This is a problem familiar to all readers who have maneuvered in orbit, where the principles of orbital mechanics are the rules of the road. To solve it, we rely on one of the laws that we have addressed many times in these logs: objects in a lower orbit travel faster. We described this in more detail in February, and we can recall the essential idea here. The gravitational attraction of any body, whether it is the sun, Earth, a black hole, or anything else, is greater at shorter ranges. So to balance that strong inward pull, an orbiter is compelled to race around quickly. At higher orbits, where gravity is weaker, a more leisurely orbital pace suffices.

We can take advantage of this characteristic of orbits. If we drop to a slightly lower orbit, we travel along more swiftly. That is precisely what Dawn needs to do in order to ensure that when it finishes expanding and tilting its orbit in 2015 so that it is the same as Ceres’s, it winds up at the same location as its target. This would be like speeding up the minute hand that had begun at the 12, allowing it to catch up with the hand that would otherwise always be leading it.

› Continue reading Marc Rayman’s Dawn Journal